Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The ability of the LPMOs to act on more natural substrates was demonstrated by showing that SgLPMO10B improved chitin solubilization in dried powdered shrimp shells.Immunotherapy using antigen-specific cytotoxic T lymphocytes (CTLs) has become one of the most attractive strategies for cancer treatment. For the induction of antigen-specific CTLs in vivo, the co-delivery of CpG-DNAs and antigens to the same antigen-presenting cells (APCs) is a promising strategy. In this study, we prepared conjugates consisting of 40mer of CpG-DNA (CpG40) and antigenic peptide (OVA257-264), which have the following distinctive features (1) multiple CpG motifs in a molecule; (2) cleavage in the cytosol because of the disulfide bonding via cysteine residue between peptide and CpG-DNA; (3) conjugation designed to induce antigen presentation on MHC class I molecules. Immunization with the conjugate CpG40-C-OVA257-264 at the mouse tail base induced strong CTL activity at a very low peptide dose of 20 ng/head. It was found that the conjugates were internalized into C-type mannose receptor 1 (MRC1)-expressing cells in inguinal lymph nodes, indicating that the CpG portion in the conjugate acts as not only an adjuvant for the activation of TLR9 but also a carrier to APCs expressing MRC1. In a tumor-bearing mice model, mice immunized with CpG40-C-OVA257-264 conjugates exhibited long delays in tumor growth compared with those treated with PBS, OVA257-264 alone, or a mixture of CpG40 and OVA257-264. Therefore, CpG-C-peptide conjugates could be a new and effective platform for peptide vaccine for the treatment of cancers and infectious diseases.A gas-phase high-throughput reaction screening platform was developed for the first time to study chemical structures of closely related functional groups and for the discovery of novel organic reaction pathways. Experiments were performed using the contained atmospheric pressure chemical ionization (APCI) source that enabled nonthermal, nonequilibrium plasma chemistry to be monitored by mass spectrometry (MS) in real time. This contained-APCI MS platform allowed an array of reagents to be tested, resulting in the studies of multiple gas-phase reactions in parallel. By exposing headspace vapor of the selected reagents to corona discharge, solvent-free Borsche-Drecsel cyclization reaction, Katritzky chemistry, and Paal-Knorr pyrrole synthesis were examined in the gas phase, outside the high vacuum environment of the mass spectrometer. A new radical-mediated hydrazine coupling reaction was also discovered, which provided a selective pathway to synthesize secondary amines without using a catalyst. The mechanisms of these atmospheric pressure gas-phase reactions were explored through the direct capture of intermediates and via comparison with the corresponding bulk solution and droplet-phase reactions.Due to the large demand of lithium-ion batteries (LIBs) for energy storage in daily life and the limited lifetime of commercial LIB cells, exploring green and sustainable recycling methods becomes an urgent need to mitigate the environmental and economic issues associated with waste LIBs. In this work, we demonstrate an efficient direct recycling method to regenerate degraded lithium manganese oxide (LMO) cathodes to restore their high capacity, long cycling stability, and high rate performance, on par with pristine LMO materials. This one-step regeneration, achieved by a hydrothermal reaction in dilution Li-containing solution, enables the reconstruction of desired stoichiometry and microphase purity, which is further validated by testing spent LIBs with different states of health. Life-cycle analysis suggested the great environmental and economic benefits enabled by this direct regeneration method compared with today's pyro- and hydrometallurgical processes. This work not only represents a fundamental understanding of the relithiation mechanism of spent cathodes but also provides a potential solution for sustainable and closed-loop recycling and remanufacturing of energy materials.Perfluorooctanoic acid (PFOA) is an eight-carbon perfluoroalkyl chemical and has been detected widely in many media. Although the toxic effect of PFOA has been confirmed, the influence on gut and brain has not been cleared. Male C57BL/6J mice were exposed to different concentrations (0, 0.5, 1, and 3 mg/Kg (bw)/day of PFOA for 35 days in this work. The results indicate that exposure to PFOA could damage intestinal barrier integrity and impair the synaptic structure. PFOA exposure also caused inflammation in gut and brain by increasing lipopolysaccharide, tumor necrosis factor-α, interleukin-1 beta, and cyclooxygenase-2 and decreasing interleukin-10. Interestingly, fecal microbiota transplantation treatment could attenuate a series of PFOA-induced changes to a certain extent. The results suggest that exposure to PFOA has potential deleterious effects on gut and brain, and inflammation may play an essential role in evaluating the influence induced by PFOA exposure.The deactivation of selective catalytic reduction (SCR) catalysts by arsenic is a serious problem for NH3-SCR. However, it is tough to design catalysts with good resistance to arsenic compared to other poisons such as alkali metal, SO2, etc., because As not only deteriorates surface acidity but also redox property, causing excessive N2O generation. A novel CeO2-WO3-Al2O3 catalyst is developed with excellent arsenic resistance in this study, which presents only less than 10% activity loss compared to nearly 40% loss for CeO2-WO3 with same arsenic loading (As 2.1 wt %). Moreover, a significant negative impact on the N2O generation for poisoning catalysts from 26.7 to 7.5 ppm has also been found. The characterization results demonstrated that the interaction between cerium and arsenic lead to Lewis acid sites and oxygen vacancies loss as well as unexpected oxidation sites formation. selleck chemical However, the introduction of Al weakens the deactivation effect by replacing cerium to interact with arsenic. Three aspects are proposed for obtaining excellent arsenic-resistant performance (1) the protection of Lewis acid sites, (2) release of oxygen vacancies from As restriction, and (3) confinement of As5+ oxidizing capacity. This study may provide an effective strategy to design and develop novel virtuous antipoisoning catalysts.
Homepage: https://www.selleckchem.com/products/bismuth-subnitrate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team