NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

A new Timed Off-Switch pertaining to Dynamic Control over Gene Term within Corynebacterium Glutamicum.
The research presented in this paper concerns the assessment of the resistance to high-temperature oxidation behaviour of a Ti-46Al-7Nb-0.7Cr-0.1Si-0.2Ni alloy and the explanation of the role of niobium during oxidation processes. The basic problem concerned the evaluation of the resistance of the studied alloy to cyclic oxidation in an air atmosphere, with particular attention to the influence of temperature, surface roughness and cooling rate from heating temperature to room temperature. The issue analysed was the effect of niobium addition on the corrosion kinetics as a high-melting element causing improved oxidation resistance, contributing to the reduction in the oxidation rate.The effects of hydrothermal treatment, 0-5% KMnO4 content, and 300-400 °C pyrolysis temperature, were studied for activated carbon preparation from sugar cane leaves in comparison with non-hydrothermal treatment. The percent yield of activated carbon prepared by the hydrothermal method (20.33-36.23%) was higher than that prepared by the non-hydrothermal method (16.40-36.50%) and was higher with conditions employing the same content of KMnO4 (22.08-42.14%). The hydrothermal and pyrolysis temperatures have the effect of increasing the carbon content and aromatic nature of the synthesized activated carbons. In addition, KMnO4 utilization increased the O/C ratio and the content of C-O, Mn-OH, O-Mn-O, and Mn-O surface functional groups. KMnO4 also decreases zeta potential values throughout the pH range of 3 to 11 and the surface area and porosity of the pre-hydrothermal activated carbons. The use of the pre-hydrothermal activated carbon prepared with 3% KMnO4 and pyrolyzed at 350 °C as a filter in an aquaponic system could improve the quality of water with pH of 7.2-7.4, DO of 9.6-13.3 mg/L, and the turbidity of 2.35-2.90 NTU. It could also reduce the content of ammonia, nitrite, and phosphate with relative removal rates of 86.84%, 73.17%, and 53.33%, respectively. These results promoted a good growth of catfish and red oak lettuce.The evolution of the martensite-austenite (MA) constituent in the heat-affected zone (HAZ) of high-strength steel FH690 welds when subjected to electropulsing (EP) treatment was investigated herein, with the aim of eliminating brittle MA to enhance toughness. The features induced by EPT were correlated with the microstructure and fractography through scanning electron microscopy and electron backscatter diffraction analyses, together constituting an impact property evaluation. The Charpy V-notch impact results showed EPT could improve toughness of the HAZ from 34.1 J to 51.8 J (the calibrated value was 46 J). Examinations of EP-treated microstructure showed a preferred Joule heating at the site of the MA constituent, the cleavage fractography introduced by the MA constituent was substituted with ductile dimples with various sizes. Decreases in grain size of 40% and 47% for the matrix and the retained austenite, respectively, were achieved; while for regions without the MA constituent, microstructural modification was negligible. The temperature rise at sample surface was less than 60 °C. The mechanism behind this favorable Joule heating for the MA constituent was correlated with the electrical properties of the MA constituent in contrast with martensite matrix. The toughness enhancement of the HAZ was thus attributed to the elimination of the coarse MA constituent. The present investigation suggested that electropulsing, characterized as a narrow-duration current, is a promising method for preferred elimination of brittle factors and thus improving the toughness of HAZ of high-strength steel within a limited region with a width less than 2 mm.Carbon fiber-reinforced composite material (CFRP) has been widely applied in the aerospace industry, which places demanding requirements on the accuracy and quality of its processing. However, there remains a lack of clarity on the microscopic material removal process of CFRP, despite substantial relevant research. This paper aims to reveal the mechanism of material removal in the CFRP cutting process at different fiber cutting angles and to establish an analytical model for CFRP cutting force by considering the radius of the edge circle. Furthermore, the CFRP cutting force analytical model was established by considering the radius of the edge circle on the basis of the CFRP representative volume unit (RVE). According to the model, the cutting process was divided into three regions, the cutting slip zone, fiber fracture zone, and spring back zone, with consideration given to the effect of residual fibers on the cutter teeth. The CFRP cutting finite element model was defined using the software Abaqus, while the chip removal and single-fiber deformation processes were analyzed using the finite element model. As indicated by the experimental results, the analytical model is reliable and capable of providing cutting force values within a 15% deviation.The austenitization of low alloy steels during rapid heating processes was involved in many kinds of advanced heat treatment technologies. Most of the previous research on the austenitization kinetics was focused on the spherical pearlite microstructures, which were different from the lamellar pearlite microstructures. In the present research, to predict the non-isothermal austenitization process of an Fe-C-Cr steel with lamellar pearlite, a novel 3-dimensional (3D) cellular automata model, which considered the influences of the coupling diffusion of Cr and C, and the interfacial diffusion between pearlite lamellae and the pearlite lamellar orientation, was established based on the thermodynamic equilibrium data obtained from the Thermo-Calc software and the simulation results of the DICTRA module. To clarify the influences of the heating rate on the austenitization kinetics and validate the simulation results, the austenitization processes of a Fe-1C-1.41Cr steel for different heating rates were studied with a series of dilatometric experiments. The good agreements between the cellular automata simulation results and the experimental results showed that the newly proposed cellular automata model is reasonable. The experimental results show an obvious change of the transition activity energies from the low to high heating rates. The transition from partitioning local equilibrium (PLE) to non-partitioning local equilibrium (NPLE) mechanisms was proved with DICTRA simulations. Basing on the simulation results, the influences of the pearlite lamellae orientation on the austenitization kinetics and the topological aspects of austenite grains were evaluated. In addition, the topological aspects of the rapidly austenitized grains were also compared to the normal grains.The paper presents results of preparation and modification of Ti20Nb5Zr foams by a thermal dealloying method followed by electrochemical modification. The first step of this study was the preparation of Ti20Nb5Zr30Mg nanopowder using mechanical alloying (MA). The second was forming green compacts by cold pressing and then sintering with magnesium dealloyed from the structure, which resulted in pores formation. The next step was surface modification by electrochemical etching and silver nanoparticle deposition. Porosity, morphology, mechanical properties as well as biocompatibility and antibacterial behavior were investigated. Titanium foam porosity up to approximately 60% and wide pore size distribution were successfully prepared. The new materials have shown positive behavior in the MTT assay as well as antibacterial properties. These results confirmed great potential for thermal dealloying in preparation of porous structures.High-pressure torsion (HPT) is a severe plastic deformation technique where a sample is subjected to torsional shear straining under a high hydrostatic pressure. The HPT method is usually employed to create ultrafine-grained nano-structures, making it widely used in processing many kinds of materials such as metals, glasses, biological materials, and organic compounds. Most of the published HPT results have been focused on the microstructural development of non-magnetic materials and their influence on the mechanical properties. The HPT processing of magnetic materials and its influence on the structural and magnetic properties have attracted increasing research interest recently. This review describes the application of HPT to magnetic materials and our recent experimental results on Mn3O4, Mn4N, and MnAl-based alloys. After HPT, most magnetic materials exhibit significantly reduced grain size and substantially enhanced coercivity.This study aimed to investigate the feasibility of using a model based on particle swarm optimization (PSO) and support vector machine (SVM) to predict the unconfined compressive strength (UCS) of cemented paste backfill (CTB). The dataset was built based on the experimental UCS values. Results revealed that the categorized randomly segmentation was a suitable approach to establish the training set. The PSO performed well in the SVM hyperparameters tuning; the optimal hyperparameters for the SVM to predict the UCS of CTB in this study were C = 71.923, ε = 0.0625, and γ = 0.195. The established model showed a high accuracy and efficiency on the prediction work. The R2 value was 0.97 and the MSE value was 0.0044. It was concluded that the model was feasible to predict the UCS of CTB with high accuracy and efficiency. Protoporphyrin IX In the future, the accuracy and robustness of the prediction model will be further improved as the size of the dataset continues to grow.The defects of poor workability and inadequate pavement performance of the ultra-thin asphalt overlay limited its application in the preventive maintenance of pavements. In this study, a high-workability ultra-thin (HWU) asphalt overlay scheme was proposed. A high-strength-modified asphalt binder and an optimized HWU-10 gradation were used to prepare the HWU asphalt mixture and explore its laboratory performance. Furthermore, the HWU asphalt mixture was used for the test road paving. Based on the field performance test results before and after the test road for one year of traffic operation, the application performance of the HWU asphalt mixture and styrene-butadiene-styrene (SBS)-modified asphalt mixture was compared and analyzed. The results showed that the HWU asphalt mixture possessed satisfactory laboratory pavement performance, and its high-temperature stability and moisture damage resistance were better than those of the SBS-modified asphalt mixture. The asphalt mixture prepared using HWU-10 gradation was easily compacted and showed good workability. After one year of operation, all field performance of the ultra-thin overlay paved with HWU asphalt mixture met the specification requirements, but its flatness and skid resistance decreased. It is worth mentioning that the HWU asphalt mixture was significantly better than the SBS-modified asphalt mixture in terms of performance degradation resistance and rutting resistance. The studies to enhance the road intersection pavement performance and ensure the homogeneous dispersion of polyester fibers in the asphalt mixture will be considered in the future.Although the disposal of waste ashes causes environmental hazards, recycling them helps in reducing their harmful impacts and improves the characteristics of building materials. The present study explores the possible use of locally available waste ashes including Rice husk ash (RHA)and Silica Fumes (SF) as a partial replacement for cement in concrete to counter the negative impact of alkali-silica reactions (ASRs). In the present study, ternary blends including RHA (0-30%), SF (5% and 10%) and Portland cement were investigated. The amorphous behavior of RHA and SF was confirmed by conducting an X-ray diffraction analysis. A petrography analysis was carried out to ensure the reactive nature of aggregates used to prepare the concrete specimen. Accelerated mortar bar tests were performed in accordance with ASTM C 1260 for up to 90 days. It was revealed that specimens incorporating a ternary blend of SF, RHA, and Portland cement exhibited less expansion compared to the control specimens without SF and RHA. The incorporation of 5% SF along with 20% RHA exhibited a 0.
Website: https://www.selleckchem.com/products/protoporphyrin-ix.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.