Notes
Notes - notes.io |
Bioactive peptides are a class of peptides with special physiological functions and have potential applications in human health and disease prevention. Bioactive peptides have gained much research attention because they affect the cardiovascular, endocrine, immune, and nervous systems. Recent research has reported that bioactive peptides are of great value for physiological function regulation, including antioxidation, anti-hypertension, antithrombosis, antibacterial properties, anti-cancer, anti-inflammation, anti-diabetic, anti-obesity, cholesterol-lowering, immunoregulation, mineral binding and opioid activities. The production of food-derived bioactive peptides is mainly through the hydrolysis of digestive enzymes and proteolytic enzymes or microbial fermentation. The purpose of this review is to introduce the production, function, application, challenges, and prospects of food-derived bioactive peptides.Pd-Bi nanoparticles show high efficiency in catalyzing gluconic acid production by the glucose oxidation reaction. Although this type of catalyst was studied for some time, the correlation between bismuth content and catalytic activity is still unclear. HG-9-91-01 cost Moreover, there is little information on the principles of the formation of Pd-Bi nanoparticles. In this work, the relation between bismuth content and the activity and selectivity of the PdxBiy/Al2O3 catalyst in the glucose oxidation process was studied. The catalytic samples were prepared by co-impregnation of the alumina support utilizing the metal-organic precursors of Pd and Bi. The samples obtained were tested in the glucose oxidation reaction and were studied by transmission electron microscopy (TEM), X-ray fluorescence analysis, X-ray photoelectron spectroscopy (XPS), and BET adsorption. It has been found that the Pd3 Bi1 atomic ratio grants the highest catalytic efficiency for the studied samples. To explain this, we predicted stable Pd-Bi nanoparticles using ab initio evolutionary algorithm USPEX. The calculations demonstrate that nanoparticles tend to form Pd(core)-Bi(shell) structures turning to a crown-jewel morphology at lower Bi concentration, thus exposing the active Pd centers while maintaining the promoting effect of Bi.Functionalized spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cyclohexanes] were efficiently synthesized in satisfactory yields with high diastereoselectivity by CuSO4 catalyzed multicomponent reaction of indole-2-acetate, aromatic aldehyde and 1,3-dimethylbarbituric acid or dimedone. The reaction was finished with sequential Diels-Alder reaction of both in situ generated indole-2,3-quinodimethane and a dienophile. Additionally, the initially formed spiro[carbazole-3,5'-pyrimidines] were converted to dehydrogenated spiro[carbazole-3,5'-pyrimidines] by DDQ oxidation. The initially formed spiro[carbazole-3,1'-cyclohexanes] were converted to δ-valerolactone-substituted carbazoles by a DDQ promoted Baeyer-Villiger oxidation process.We report a novel solvothermal route for the production of bassanite (CaSO4·0.5H2O) nanoparticles using amorphous Ca-ethoxide as a precursor. Bassanite nanorods, 120-200 nm in length, with the highest specific surface area reported so far (54 m2 g-1) and enhanced reactivity, are obtained at 78 °C and 1 atm. Such nanoparticles may find application in several fields, including biomaterials, drug delivery, and cultural heritage conservation.A novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection. Sodium ascorbate could dissolve Cu3(PO4)2 of the signal probe to produce Cu2+, which was subsequently converted to Cu+, triggering the Cu+-catalyzed alkyne-azide cycloaddition (CuAAC) reaction between azide-functionalized ssDNA (a fragment of the DNAzyme-containing sequence) and alkyne-functionalized ssDNA immobilized onto the electrode surface. As a result, the DNAzyme was immobilized onto the gold electrode, which produced a positive and stable electrical signal. An exceptional linear relationship was observed between the electrical signal and the concentration of Salmonella typhimurium (101-107 CFU mL-1) with a detection limit of 10 CFU mL-1. The developed electrochemical biosensor based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes exhibited good results in detecting S. typhimurium in milk samples.The combination of therapeutic and diagnostic functions in a single platform has aroused great interest due to the more optimal synergistic effects that can be obtained as compared to any single theranostic approach alone. However, current nanotheranostics are normally formed via complicated construction steps involving the pre-synthesis of each component and further conjugation via chemical bonds, which may cause low integration efficiency and limit production and applications. Herein, a tumor-targeting and tumor-responsive all-in-one nanoplatform based on mesoporous silica nanocarriers (MSNs) was fabricated via a facile approach utilizing efficient and nondestructive physical interactions for long-wavelength fluorescence imaging-guided synergistic chemo-catalytic-photothermal tumor therapy. The MSNs were endowed with these multimodal theranostics via a simple hydrothermal method after coordinating with Fe2+ and glutathione (GSH) to introduce ferroferric oxide and carbon dots in situ. The former acts as a phould be directly tracked via fluorescence imaging enabled by carbon dots and, therefore, our nanoplatform provides a promising theranostics approach for tumor treatment.A mild and efficient visible-light-induced synthesis of C-3 dicarbonyl coumarins from 3-arylacetylene coumarins without a photocatalyst was reported. This iodide-mediated method exhibited broad substrate scope and good functional group tolerance, and a series of C-3 dicarbonyl coumarins were obtained in moderate to excellent yields. Based on the control experimental results, it was found that the visible-light-induced oxidation might be via both radical and ionic processes. Moreover, some synthesized compounds displayed high sensitivity to hydrogen peroxide (H2O2) with a low detection limit (DL, down to 0.149 μM).
Read More: https://www.selleckchem.com/products/hg-9-91-01.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team