Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Here, we find that the AUC is around 0.95 which is evaluated as outstanding.The extropy has recently been introduced as the dual concept of entropy. Moreover, in the context of the Dempster-Shafer evidence theory, Deng studied a new measure of discrimination, named the Deng entropy. In this paper, we define the Deng extropy and study its relation with Deng entropy, and examples are proposed in order to compare them. The behaviour of Deng extropy is studied under changes of focal elements. A characterization result is given for the maximum Deng extropy and, finally, a numerical example in pattern recognition is discussed in order to highlight the relevance of the new measure.In this paper, we provide a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. However, as the blocklength decreases, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths over the additive white Gaussian noise (AWGN) channel, the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM) and SpSh are reviewed as energy-efficient shaping techniques. Numerical results show that both have smaller rate losses than CCDM. SpSh-whose sole objective is to maximize the energy efficiency-is shown to have the minimum rate loss amongst all, which is particularly apparent for ultra short blocklengths. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspectives of latency, storage and computations.Information theory is a powerful tool for analyzing complex systems. In many areas of neuroscience, it is now possible to gather data from large ensembles of neural variables (e.g., data from many neurons, genes, or voxels). The individual variables can be analyzed with information theory to provide estimates of information shared between variables (forming a network between variables), or between neural variables and other variables (e.g., behavior or sensory stimuli). However, it can be difficult to (1) evaluate if the ensemble is significantly different from what would be expected in a purely noisy system and (2) determine if two ensembles are different. Herein, we introduce relatively simple methods to address these problems by analyzing ensembles of information sources. We demonstrate how an ensemble built of mutual information connections can be compared to null surrogate data to determine if the ensemble is significantly different from noise. Next, we show how two ensembles can be compared using a randomization process to determine if the sources in one contain more information than the other. All code necessary to carry out these analyses and demonstrations are provided.Advancements in wearable sensors technologies provide prominent effects in the daily life activities of humans. These wearable sensors are gaining more awareness in healthcare for the elderly to ensure their independent living and to improve their comfort. Selleck GM6001 In this paper, we present a human activity recognition model that acquires signal data from motion node sensors including inertial sensors, i.e., gyroscopes and accelerometers. First, the inertial data is processed via multiple filters such as Savitzky-Golay, median and hampel filters to examine lower/upper cutoff frequency behaviors. Second, it extracts a multifused model for statistical, wavelet and binary features to maximize the occurrence of optimal feature values. Then, adaptive moment estimation (Adam) and AdaDelta are introduced in a feature optimization phase to adopt learning rate patterns. These optimized patterns are further processed by the maximum entropy Markov model (MEMM) for empirical expectation and highest entropy, which measure signal variances for outperformed accuracy results. Our model was experimentally evaluated on University of Southern California Human Activity Dataset (USC-HAD) as a benchmark dataset and on an Intelligent Mediasporting behavior (IMSB), which is a new self-annotated sports dataset. For evaluation, we used the "leave-one-out" cross validation scheme and the results outperformed existing well-known statistical state-of-the-art methods by achieving an improved recognition accuracy of 91.25%, 93.66% and 90.91% when compared with USC-HAD, IMSB, and Mhealth datasets, respectively. The proposed system should be applicable to man-machine interface domains, such as health exercises, robot learning, interactive games and pattern-based surveillance.This study considers the problem of detecting a change in the conditional variance of time series with time-varying volatilities based on the cumulative sum (CUSUM) of squares test using the residuals from support vector regression (SVR)-generalized autoregressive conditional heteroscedastic (GARCH) models. To compute the residuals, we first fit SVR-GARCH models with different tuning parameters utilizing a time series of training set. We then obtain the best SVR-GARCH model with the optimal tuning parameters via a time series of the validation set. Subsequently, based on the selected model, we obtain the residuals, as well as the estimates of the conditional volatility and employ these to construct the residual CUSUM of squares test. We conduct Monte Carlo simulation experiments to illustrate its validity with various linear and nonlinear GARCH models. A real data analysis with the S&P 500 index, Korea Composite Stock Price Index (KOSPI), and Korean won/U.S. dollar (KRW/USD) exchange rate datasets is provided to exhibit its scope of application.Recently, there has been increasing interest in techniques for enhancing working memory (WM), casting a new light on the classical picture of a rigid system. One reason is that WM performance has been associated with intelligence and reasoning, while its impairment showed correlations with cognitive deficits, hence the possibility of training it is highly appealing. However, results on WM changes following training are controversial, leaving it unclear whether it can really be potentiated. This study aims at assessing changes in WM performance by comparing it with and without training by a professional mnemonist. Two groups, experimental and control, participated in the study, organized in two phases. In the morning, both groups were familiarized with stimuli through an N-back task, and then attended a 2-hour lecture. For the experimental group, the lecture, given by the mnemonist, introduced memory encoding techniques; for the control group, it was a standard academic lecture about memory systems. In the afternoon, both groups were administered five tests, in which they had to remember the position of 16 items, when asked in random order.
Here's my website: https://www.selleckchem.com/products/gm6001.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team