Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Whether a frozen embryo transfer is better than a fresh one should be investigated.
How endometriosis affects fertility is still unclear, but ART is an effective pragmatic treatment. Each woman with endometriosis must be assessed with a holistic approach, and in the absence of an indication for otherwise, ART cycles can be kept simple with patient-friendly protocols. Whether a frozen embryo transfer is better than a fresh one should be investigated.
To discuss different approaches to citizen responder activation and possible future solutions for improved citizen engagement in out-of-hospital cardiac arrest (OHCA) resuscitation.
Activating volunteer citizens to OHCA has the potential to improve OHCA survival by increasing bystander cardiopulmonary resuscitation (CPR) and early defibrillation. Accordingly, citizen responder systems have become widespread in numerous countries despite very limited evidence of their effect on survival or cost-effectiveness. To date, only one randomized trial has investigated the effect of citizen responder activation for which the outcome was bystander CPR. Recent publications are of observational nature with high risk of bias. A scoping review published in 2020 provided an overview of available citizen responder systems and their differences in who, when, and how to activate volunteer citizens. These differences are further discussed in this review.
Implementation of citizen responder programs holds the potential to improve bystander intervention in OHCA, with advancing technology offering new improvement possibilities. Information on how to best activate citizen responders as well as the effect on survival following OHCA is warranted to evaluate the cost-effectiveness of citizen responder programs.
Implementation of citizen responder programs holds the potential to improve bystander intervention in OHCA, with advancing technology offering new improvement possibilities. Information on how to best activate citizen responders as well as the effect on survival following OHCA is warranted to evaluate the cost-effectiveness of citizen responder programs.
The purpose of this narrative review is to provide an update on hemodynamics during cardiopulmonary resuscitation (CPR) and to describe emerging therapies to optimize perfusion.
Cadaver studies have shown large inter-individual variations in blood distribution and anatomical placement of the heart during chest compressions. Using advanced CT techniques the studies have demonstrated atrial and slight right ventricular compression, but no direct compression of the left ventricle. Hedgehog antagonist A hemodynamic-directed CPR strategy may overcome this by allowing individualized hand-placement, drug dosing, and compression rate and depth. Through animal studies and one clinical before-and-after study head-up CPR has shown promising results as a potential strategy to improve cerebral perfusion. Two studies have demonstrated that placement of an endovascular balloon occlusion in the aorta (REBOA) can be performed during ongoing CPR.
Modern imaging techniques may help increase our understanding on the mechanism of forward flow during CPR. This could provide new information on how to optimize perfusion. Head-up CPR and the use of REBOA during CPR are novel methods that might improve cerebral perfusion during CPR; both techniques do, however, still await clinical testing.
Modern imaging techniques may help increase our understanding on the mechanism of forward flow during CPR. This could provide new information on how to optimize perfusion. Head-up CPR and the use of REBOA during CPR are novel methods that might improve cerebral perfusion during CPR; both techniques do, however, still await clinical testing.
Out-of-hospital cardiac arrest (OHCA) is the most devastating and time-critical medical emergency. Survival after OHCA requires an integrated system of care, of which transport by emergency medical services is an integral component. The transport system serves to commence and ensure uninterrupted high-quality resuscitation in suitable patients who would benefit, terminate resuscitation in those that do not, provide critical interventions, as well as convey patients to the next appropriate venue of care. We review recent evidence surrounding contemporary issues in the transport of OHCA, relating to who, where, when and how to transport these patients.
We examine the clinical and systems-related evidence behind issues including contemporary approaches to field termination of resuscitation in patients in whom continued resuscitation and transport to hospital would be medically futile, OHCA patients and organ donation, on-scene versus intra-transport resuscitation, significance of response time, intra-transport interventions (mechanical chest compression, targeted temperature management, ECMO-facilitated cardiopulmonary resuscitation), OHCA in high-rise locations and cardiac arrest centers. We highlight gaps in current knowledge and areas of active research.
There remains limited evidence to guide some decisions in transporting the OHCA patient. Evidence is urgently needed to elucidate the roles of cardiac arrest centers and ECPR in OHCA.
There remains limited evidence to guide some decisions in transporting the OHCA patient. Evidence is urgently needed to elucidate the roles of cardiac arrest centers and ECPR in OHCA.
The purpose of this review is to summarize recent advances about inhaled gases as novel neuroprotective agents in the postcardiac arrest period.
Inhaled gases, as nitric oxide (NO) and molecular hydrogen (H2), and noble gases as xenon (Xe) and argon (Ar) have shown neuroprotective properties after resuscitation. In experimental settings, the protective effect of these gases has been demonstrated in both in-vitro studies and animal models of cardiac arrest. They attenuate neuronal degeneration and improve neurological function after resuscitation acting on different pathophysiological pathways. Safety of both Xe and H2 after cardiac arrest has been reported in phase 1 clinical trials. A randomized phase 2 clinical trial showed the neuroprotective effects of Xe, combined with targeted temperature management. Xe inhalation for 24 h after resuscitation preserves white matter integrity as measured by fractional anisotropy of diffusion tensor MRI.
Inhaled gases, as Xe, Ar, NO, and H2 have consistently shown neuroprotective effects in experimental studies. Ventilation with these gases appears to be well tolerated in pigs and in preliminary human trials. Results from phase 2 and 3 clinical trials are needed to assess their efficacy in the treatment of postcardiac arrest brain injury.
Inhaled gases, as Xe, Ar, NO, and H2 have consistently shown neuroprotective effects in experimental studies. Ventilation with these gases appears to be well tolerated in pigs and in preliminary human trials. Results from phase 2 and 3 clinical trials are needed to assess their efficacy in the treatment of postcardiac arrest brain injury.In the era of modern medicine, artificial intelligence (AI) is a growing field of interest which is experiencing a steady development. Several applications of AI have been applied to various aspects of cardiac magnetic resonance to assist clinicians and engineers in reducing the costs of exams and, at the same time, to improve image acquisition and reconstruction, thus simplifying their analysis, interpretation, and decision-making process as well. link2 In fact, the role of AI and machine learning in cardiovascular imaging relies on evaluating images more quickly, improving their quality, nulling intraobserver and interobserver variability in their interpretation, upgrading the understanding of the stage of the disease, and providing with a personalized approach to cardiovascular care. In addition, AI algorithm could be directed toward workflow management. This article presents an overview of the existing AI literature in cardiac magnetic resonance, with its strengths and limitations, recent applications, and promising developments. We conclude that AI is very likely be used in all the various process of diagnosis routine mode for cardiac care of patients.
The use of genetic models has facilitated the study of the origins and mechanisms of vascular disease. link3 Mouse models have been developed to specifically target endothelial cell populations, with the goal of pinpointing when and where causative mutations wreck their devastating effects. Together, these approaches have propelled the development of therapies by providing an in-vivo platform to evaluate diagnoses and treatment options. This review summarizes the most widely used mouse models that have facilitated the study of vascular disease, with a focus on mouse models of vascular malformations and the road ahead.
Over the past 3 decades, the vascular biology scientific community has been steadily generating a powerful toolkit of useful mouse lines that can be used to tightly regulate gene ablation, or to express transgenic genes, in the murine endothelium. Some of these models inducibly (constitutively) alter gene expression across all endothelial cells, or within distinct subsets, by expressing either Creidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
The current review assesses the collection of mouse driver lines that have been instrumental is identifying genes required for blood vessel formation, remodeling, maintenance/quiescence and disease. In addition, the usefulness of these driver lines is underscored here by cataloguing mouse lines developed to experimentally assess the role of key candidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
Retrospective study.
To evaluate the morphologic features of the subaixal cervical spine in patients with basilar invagination (BI) and provide information for the accurate screw placement in this region.
BI is a congenital anomaly, comprising a wide range of abnormal structures. The screw fixation can be required in situation that BI is combined with subaxial cervical spine pathologies. However, there are no literatures specifically addressed the subaxial cervical morphology of BI.
A total of 42 BI patients were included in this retrospective study. Forty-two patients without head or cervical disease were matched for sexes and ages. Information on radiographic features of the subaxial cervical spine was collected and compared systematically.
There were no differences in the age and sex between the BI and control group. The BI group manifested a wider pedicle and laminar than the control group at all cervical levels, except for the pedicle of C6 and C7, and the laminar of C3 and C6. In addition, the BI group had a wider lateral mass from C3 to C5 than the control group. There were no differences in most measurements of the length of pedicle, laminar, and lateral mass.
BI patients have a wider pedicle and laminar than the general population in the subaxial cervical spine, but the same size in length of pedicle, laminar and lateral mass.Level of Evidence 4.
BI patients have a wider pedicle and laminar than the general population in the subaxial cervical spine, but the same size in length of pedicle, laminar and lateral mass.Level of Evidence 4.
Here's my website: https://www.selleckchem.com/products/sant-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team