Notes
Notes - notes.io |
Oxygen activation, including oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), is at the heart of many important energy conversion processes. However, the activation mechanism of Ba-containing perovskite materials is still ambiguous, because of the complex four-electron transfer process on the gas-solid interfaces. Here, we directly observe that BaO and BaO2 segregated on Ba-containing material surface participate in the oxygen activation process via the formation and decomposition of BaO2. Tens of times of increase in catalytic activities was achieved by introducing barium oxides in the traditional perovskite and inert Au electrodes, indicating that barium oxides are critical for oxygen activation. We find that BaO and BaO2 are more active than the B-site of perovskite for ORR and OER, respectively, and closely related to the high activity of Ba-containing perovskite.Adenomatous polyposis coli (APC) is a tumor suppressor whose mutations underlie familial adenomatous polyposis (FAP) and colorectal cancer. Although its role in intestinal epithelial cells is well characterized, APC importance in T cell biology is ill defined. APC regulates cytoskeleton organization, cell polarity, and migration in various cell types. Here, we address whether APC plays a role in T lymphocyte migration. Using a series of cell biology tools, we unveiled that T cells from FAP patients carrying APC mutations display impaired adhesion and motility in constrained environments. We further dissected the cellular mechanisms underpinning these defects in APC-depleted CEM T cell line that recapitulate the phenotype observed in FAP T cells. We found that APC affects T cell motility by modulating integrin-dependent adhesion and cytoskeleton reorganization. Hence, APC mutations in FAP patients not only drive intestinal neoplasms but also impair T cell migration, potentially contributing to inefficient antitumor immunity.Flexible metal-organic frameworks that show reversible guest-induced phase transitions between closed and open pore phases have enormous potential for highly selective, energy-efficient gas separations. Here, we present the gate-opening process of DUT-8(Ni) that selectively responds to D2, whereas no response is observed for H2 and HD. In situ neutron diffraction directly reveals this pressure-dependent phase transition. Low-temperature thermal desorption spectroscopy measurements indicate an outstanding D2-over-H2 selectivity of 11.6 at 23.3 K, with high D2 uptake. First-principles calculations coupled with statistical thermodynamics predict the isotope-selective gate opening, rationalized by pronounced nuclear quantum effects. Simulations suggest DUT-8(Ni) to remain closed in the presence of HT, while it also opens for DT and T2, demonstrating gate opening as a highly effective approach for isotopolog separation.Earthquake monitoring in urban settings is essential but challenging, due to the strong anthropogenic noise inherent to urban seismic recordings. Here, we develop a deep-learning-based denoising algorithm, UrbanDenoiser, to filter out urban seismological noise. UrbanDenoiser strongly suppresses noise relative to the signals, because it was trained using waveform datasets containing rich noise sources from the urban Long Beach dense array and high signal-to-noise ratio (SNR) earthquake signals from the rural San Jacinto dense array. Application to the dense array data and an earthquake sequence in an urban area shows that UrbanDenoiser can increase signal quality and recover signals at an SNR level down to ~0 dB. Earthquake location using our denoised Long Beach data does not support the presence of mantle seismicity beneath Los Angeles but suggests a fault model featuring shallow creep, intermediate locking, and localized stress concentration at the base of the seismogenic zone.Incompatibility of electrolytes with Li anode impedes the application of solid-state batteries. Aluminum with appropriate potential, high-capacity, and electronic conductivity can alloy with Li spontaneously and is proposed herein as a carbon-free and binder-free anode of an all-solid-state Li-S battery (LSB). A biphasic lithiation reaction of Al with modest volume change was revealed by in situ characterization. The Li0.8Al alloy anode showed excellent compatibility toward the Li10GeP2S12 (LGPS) electrolyte, as verified by the steady Li0.8Al-LGPS-Li0.8Al cell operation for over 2500 hours at 0.5 mA cm-2. An all-solid-state LSB comprising Li0.8Al alloy anode and melting-coated S composite cathode functioned steadily for over 200 cycles with a capacity retention of 93.29%. Furthermore, a Li-S full cell with a low negative-to-positive ratio of 1.125 delivered a specific energy of 541 Wh kg-1. This work provides an applicable anode selection for all-solid-state LSBs and promotes their practical procedure.Neonicotinoid mixtures are common in streams worldwide, but corresponding ecological responses are poorly understood. We combined experimental and observational studies to narrow this knowledge gap. The mesocosm experiment determined that concentrations of the neonicotinoids imidacloprid and clothianidin (range of exposures, 0 to 11.9 μg/liter) above the hazard concentration for 5% of species (0.017 and 0.010 μg/liter, respectively) caused a loss in taxa abundance and richness, disrupted adult emergence, and altered trophodynamics, while mixtures of the two neonicotinoids caused dose-dependent synergistic effects. In 85 Coastal California streams, neonicotinoids were commonly detected [59% of samples (n = 340), 72% of streams], frequently occurred as mixtures (56% of streams), and potential toxicity was dominated by imidacloprid (maximum = 1.92 μg/liter) and clothianidin (maximum = 2.51 μg/liter). Ecological responses in the field were consistent with the synergistic effects observed in the mesocosm experiment, indicating that neonicotinoid mixtures pose greater than expected risks to stream health.Venus flytrap and bladderwort, capable of rapid predation through a snapping transition, have inspired various designs of soft actuators and robots with fast actions. These designs, in contrast to their natural counterparts, often require a direct force or pressurization. Here, we report a bistable domal hydrogel structure capable of spontaneous and reversible snapping under an electric field. Unlike a mechanical force, the electric field does not drive the gel directly. Instead, it redistributes mobile ions that direct the migration of water molecules and bends the polyelectrolyte hydrogel. Subject to constraint from surrounding neutral gel, the elastic energy accumulates until suddenly released by snapping, just like the process in natural organisms. Several proof-of-concept examples, including an optical switch, a speedy catcher, and a pulse pump, are designed to demonstrate the versatile functionalities of this unit capable of articulate motion. This work should bring opportunities to devise soft robotics, biomedical devices, etc.Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.Southeast Asia's peatlands are considered a globally important source of terrigenous dissolved organic carbon (DOC) to the ocean. Human disturbance has probably increased peatland DOC fluxes, but the lack of monitoring has precluded a robust demonstration of such a regional-scale impact. selleck compound Here, we use a time series of satellite ocean color data from northwestern Borneo to show that DOC concentrations in coastal waters have increased between 2002 and 2021 by 0.31 μmol liter-1 year-1 (95% confidence interval, 0.18 to 0.44 μmol liter-1 year-1). We show that this was caused by a ≥30% increase in the concentration of terrigenous DOC and coincided with the conversion of 69% of regional peatland area to nonforest land cover, suggesting that peatland conversion has substantially increased DOC fluxes to the sea. This rise in DOC concentration has also increased the underwater light absorption by dissolved organic matter, which may affect marine productivity by altering underwater light availability.Mitochondrial quality control plays an important role in maintaining mitochondrial homeostasis and function. Disruption of mitochondrial quality control degrades brain function. We found that flunarizine (FNZ), a drug whose chronic use causes parkinsonism, led to a parkinsonism-like motor dysfunction in mice. FNZ induced mitochondrial dysfunction and decreased mitochondrial mass specifically in the brain. FNZ decreased mitochondrial content in both neurons and astrocytes, without affecting the number of nigral dopaminergic neurons. In human neural progenitor cells, FNZ also induced mitochondrial depletion. Mechanistically, independent of ATG5- or RAB9-mediated mitophagy, mitochondria were engulfed by lysosomes, followed by a vesicle-associated membrane protein 2- and syntaxin-4-dependent extracellular secretion. A genome-wide CRISPR knockout screen identified genes required for FNZ-induced mitochondrial elimination. These results reveal not only a previously unidentified lysosome-associated exocytosis process of mitochondrial quality control that may participate in the FNZ-induced parkinsonism but also a drug-based method for generating mitochondria-depleted mammal cells.Here, we present evidence for the earliest known calendar notation from the Maya region, found among fragments of painted murals excavated at San Bartolo, Guatemala. On the basis of their sealed contexts in an early architectural phase of the "Las Pinturas" pyramid, we assign these fragments to between 300 and 200 BCE, preceding the other well-known mural chamber of San Bartolo by approximately 150 years. The date record "7 Deer" represents a day in the 260-day divinatory calendar used throughout Mesoamerica and among indigenous Maya communities today. It is presented along with 10 other text fragments that reveal an established writing tradition, multiple scribal hands, and murals combining texts with images from an early ritual complex. The 7 Deer day record represents the earliest securely dated example of the Maya calendar and is important to understanding the development of the 260-day count and associated aspects of Mesoamerican religion and cosmological science.Skin-attachable sensors, which represent the ultimate form of wearable electronic devices that ensure conformal contact with skin, suffer from motion artifact limitations owing to relative changes in position between the sensor and skin during physical activities. In this study, a polarization-selective structure of a skin-conformable photoplethysmographic (PPG) sensor was developed to decrease the amount of scattered light from the epidermis, which is the main cause of motion artifacts. The motion artifacts were suppressed more than 10-fold in comparison with those of rigid sensors. The developed sensor-with two orthogonal polarizers-facilitated successful PPG signal monitoring during wrist angle movements corresponding to high levels of physical activity, enabling continuous monitoring of daily activities, even while exercising for personal health care.
Here's my website: https://www.selleckchem.com/products/pi4kiiibeta-in-10.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team