Notes
![]() ![]() Notes - notes.io |
The number of seeds produced was negatively affected by frost events during flowering, and stand density. The trees with the most seeds also showed reduced growth in recent years. Only 63% of scanned seeds showed embryo development, and of those seeds-only 23% germinated. The likelihood of embryo presence increased as growth rate decreased, while embryo size increased with tree height, smaller DBH, and in areas dominated by hemlock. Both larger embryo volume and larger overall seed size increased the likelihood of germination. The results highlight the importance of including seed quality in addition to seed quantity for a more complete representation of reproductive output.Phenotypic plastic responses allow organisms to rapidly adjust when facing environmental challenges-these responses comprise morphological, behavioral but also life-history changes. Alteration of life-history traits when exposed to predation risk have been reported often in the ecological and genomic model organism Daphnia. However, the molecular basis of this response is not well understood, especially in the context of fish predation. Here, we characterized the transcriptional profiles of two Daphnia galeata clonal lines with opposed life histories when exposed to fish kairomones. First, we conducted a differential gene expression, identifying a total of 125 candidate transcripts involved in the predator-induced response, uncovering substantial intraspecific variation. Second, we applied a gene coexpression network analysis to find clusters of tightly linked transcripts revealing the functional relations of transcripts underlying the predator-induced response. Our results showed that transcripts involved in remodeling of the cuticle, growth, and digestion correlated with the response to environmental change in D. galeata. Furthermore, we used an orthology-based approach to gain functional information for transcripts lacking gene ontology (GO) information, as well as insights into the evolutionary conservation of transcripts. We could show that our candidate transcripts have orthologs in other Daphnia species but almost none in other arthropods. The unique combination of methods allowed us to identify candidate transcripts, their putative functions, and evolutionary history associated with predator-induced responses in Daphnia. Our study opens up to the question as to whether the same molecular signature is associated with fish kairomones-mediated life-history changes in other Daphnia species.Sexually dimorphic ornamental traits are widely regarded as indicators of nutritional condition. However, variation of nutritional condition outside the reproductive and the ornament production seasons has rarely been considered, although it affects the generality of information content, especially for ornaments that may be used across the year. We measured several indicators of migratory and molt condition in male and female blackcaps (Sylvia atricapilla) during their autumn migration, and quantified their crown reflectance. We detected robust correlations between migratory and molt condition indices, and the correlation structure was similar in the two sexes. Furthermore, the across-season measure of body condition was positively related to the darkness of the black crown in males, while being unrelated to reflectance traits of the reddish crown in females. Our results reinforce the possibility that some melanin-based ornaments may be year-round indicators of individual quality via their dependence on nutritional condition.Climate change is impacting species globally, with many populations declining at an accelerated rate toward extinction. Ectothermic species are particularly vulnerable given their reproductive success is linked to environmental temperatures. Studies of the effect of temperature on reproductive success in oviparous squamates have focused mostly on nest temperatures, after eggs are deposited. However, in some species gravid females are known to thermoregulate differently than other adults to increase reproductive success. It is essential to understand what influences the thermal biology of breeding adults in a population to implement targeted conservation strategies. The Florida scrub lizard Sceloporus woodi is an endemic species listed as near-threatened due to decreasing populations. This study is the first to document the thermal biology of these breeding adults in relation to size, sex, and reproductive status. A t test was used to determine whether sexual dimorphism was present in the sampled S. woodi. Fulrategies mitigating the impacts of climate warming.The water-permeable skin of amphibians renders them highly sensitive to climatic conditions, and interspecific correlations between environmental moisture levels and rates of water exchange across the skin suggest that natural selection adapts hydroregulatory mechanisms to local challenges. How quickly can such mechanisms shift when a species encounters novel moisture regimes? Cutaneous resistance to water loss and gain in wild-caught cane toads (Rhinella marina) from Brazil, USA (Hawai'i) and Australia exhibited strong geographic variation. selleck chemical Cutaneous resistance was low in native-range (Brazilian) toads and in Hawai'ian populations (where toads were introduced in 1932) but significantly higher in toads from eastern Australia (where toads were introduced in 1935). Toads from recently invaded areas in western Australia exhibited cutaneous resistance to water loss similar to the native-range populations, possibly because toads are restricted to moist sites within this highly arid landscape. Rates of rehydration exhibited significant but less extreme geographic variation, being higher in the native range than in invaded regions. Thus, in less than a century, cane toads invading areas that impose different climatic challenges have diverged in the capacity for hydroregulation.Exotic plant species can evolve adaptations to environmental conditions in the exotic range. Furthermore, soil biota can foster exotic spread in the absence of negative soil pathogen-plant interactions or because of increased positive soil biota-plant feedbacks in the exotic range. Little is known, however, about the evolutionary dimension of plant-soil biota interactions when comparing native and introduced ranges.To assess the role of soil microbes for rapid evolution in plant invasion, we subjected Verbascum thapsus, a species native to Europe, to a reciprocal transplant experiment with soil and seed material originating from Germany (native) and New Zealand (exotic). Soil samples were treated with biocides to distinguish between effects of soil fungi and bacteria. Seedlings from each of five native and exotic populations were transplanted into soil biota communities originating from all populations and subjected to treatments of soil biota reduction application of (a) fungicide, (b) biocide, (c) a combination of the two, and (d) control.
Homepage: https://www.selleckchem.com/products/zasocitinib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team