NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

SUNCT/SUNA inside Child Age: An assessment of Pathophysiology and also Restorative Options.
Reaction of Na9H4[VNb12O40NbO(CO3)2] with [(C6H6)RuCl2]2 (molar ratio VNb12  (C6H6)Ru = 1  4) in aqueous solution gives a mixture of [α-(C6H6)Ru4VNb12O40]7- and [α-(C6H6)Ru3VNb12O40]9-. Direct acetone diffusion into mother liquor leads to crystallization of Na6H[α-(C6H6)Ru4VNb12O40]·41.25H2O (1), characterized by single crystal X-ray diffraction (SCXRD). This anion has four organometallic fragments coordinated to the α-Keggin type [VNb12O40]15- backbone in different manner. Three (C6H6)Ru2+ groups cap triangular faces and one group a rectangular face of [VNb12O40]15-. Equilibrated mixture of [α-(C6H6)Ru4VNb12O40]7- and [α-(C6H6)Ru3VNb12O40]9- was studied by 1H DOSY NMR, HPLC-ICP-AES and HPLC-ESI-MS combined techniques. Direct chromatographic separation of these complexes results in unexpected transformation of both species into [α-(C6H6)Ru5VNb12O40]5-, isolated and characterized as Na5[α-(C6H6)Ru5VNb12O40]·16H2O (2). This anion contains five coordinated organometallic groups occupying both triangular and rectangular faces.The 1  2 and 1  1 Co(ii) complexes of the L ligand (L = 6-(3,5-diamino-2,4,6-triazinyl)2,2'-bipyridine) with formulas [CoII(L)2](ClO4)2·0.5MeCN·Et2O (1) and [CoII(L)(CH3CN)2(H2O)](ClO4)2·MeCN (2) have been prepared. The structural and magnetic characterization of the two compounds shows that they contain octahedral high-spin Co(ii) and present a field-induced slow relaxation of the magnetization. 1 has been inserted into a bimetallic oxalate-based network leading to a novel achiral 3D compound of formula [CoII(L)2][MnIICrIII(ox)3]2·(solvate) (3) exhibiting ferromagnetic ordering below 4.6 K. EPR measurements suggest a weak magnetic coupling between the two sublattices.Most praseodymium-doped red-emitting phosphors need high-temperature synthesis conditions with a reducing atmosphere. The niobate matrix selected in this work provides a sufficient electron-rich-site environment for praseodymium through charge migration, and praseodymium can be self-reduced in air atmosphere, which is safe and environmentally friendly. By building the [NbO6] group → Pr3+ energy transfer and finely modifying the doping concentration of Pr3+ ions, we constructed a dual-luminescence-system of the [NbO6] group and Pr3+. Thereby, optical temperature measurement based on fluorescence intensity ratio (FIR) technology of Pr3+ ions and [NbO6] groups was carried out using non-thermal coupling pairs, through the Boltzmann fitting and integral calculation, the maximum Sr and Sa values were 2.25% K-1 and 0.0049 K-1 at 403 K and 443 K, respectively, the Sr value is four times that obtained from the thermal coupling of Pr3+ ions, which exceeded most values previously reported for the fluorescence powder. Accordingly, we also studied the thermal sensitivity of Er3+ ions and Eu3+ ions mono-doped CaNb2O6 substrates. Results reveal that CaNb2O6Pr3+/Er3+/Eu3+ phosphors have splendid temperature sensitivity and have far-reaching application prospects in the field of temperature measurements.Functional resins with optical adjustment capability own great potential in multiple application scenarios. To this end, we functionalize resins with upconversion nanocrystals (UCNCs), namely an UCNC-Au composite structure, to endow them with the unique ability of converting near-infrared (NIR) radiation into visible-light emission. Such UCNC-functionalized resins with high transparency and flexibility are expected to accelerate the development in the comprehensive utilization of NIR during practical applications.Herein, we report a novel graphene oxide (GO) nanohybrid covalently functionalized by covalent organic polymer (COP) based on porphyrin (GO-TPPCOP), as the optical limiter and hydrogen evolution reaction (HER) electrocatalyst. The GO-TPPCOP nanohybrid exhibits markedly enhanced optical limiting and HER activity over that of TPP, GO and TPPCOP alone. More importantly, the optical limiting property and HER activity of GO-TPPCOP nanohybrid are comparable to the state-of-the-art activity of materials from some previous reports. The possible mechanisms of optical limiting and HER are explored by various means, including UV-Vis absorption, fluorescence, photocurrent, electrochemical impedance spectra and Raman spectroscopic techniques. It is demonstrated that the synergistic effect and charge transfer between GO and TPPCOP are important factors in determining its optical limiting and HER performances. These results demonstrate a new strategy to design and develop functional nanohybrids for efficient optical limiting and HER activity by the covalent linkage of GO with COPs.The rational design of efficient and durable electrocatalysts to accelerate sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics is highly desirable for enhancing the efficiency of fuel cells and metal-air batteries. Here, we demonstrated a low-temperature plasma strategy at atmospheric pressure for enhancing the catalytic activity of metal-organic framework derived N-doped carbon nanotubes (MOF-NCNTs) by changing the relative contents of Co-Nx sites, Co-Co bonds and pyridinic-N. The increase of pyridinic-N/pyrrolic-N ratio improves the ORR performance, while unsaturated Co-Nx sites and strong Co-Co bonds promote the OER performance. The relative contents of pyridinic-N, Co-Nx sites, and Co-Co bonds in MOF-NCNTs can be readily tailored by varying the plasma treatment time. The MOF-NCNTs treated with N2 plasma for 4 min (MOF-NCNTs-N2-4) exhibited improved ORR (ηonset 0.91 V) and OER (η10 0.44 V) activities compared to MOF-NCNTs because of the higher ratio of pyridinic-N to pyrrolic-N and higher relative contents of Co-Nx sites and Co-Co bonds. The hybrid sodium-air batteries (HSABs) assembled with MOF-NCNTs-N2-4 catalyst display a low overpotential of 0.35 V and excellent round trip efficiency of 88.9% at 0.1 mA cm-2. Besides, they also exhibited great cycling stability with an average discharge voltage of 2.75 V and an outstanding round trip efficiency of 84% after 150 cycles.In the quest for rare earth metal complexes with enhanced cancer chemotherapeutic properties, the discovery of seven lanthanide(iii) complexes bearing 8-hydroxyquinoline-N-oxide (NQ) and 1,10-phenanthroline (phen) ligands, i.e., [SmIII(NQ)(phen)(H2O)Cl2] (Ln1), [EuII(NQ)(phen)(H2O)Cl2] (Ln2), [GdIII(NQ)(phen)(H2O)Cl2] (Ln3), [DyIII(NQ)(phen)(H2O)Cl2] (Ln4), [HoIII(NQ)(phen)(H2O)Cl2] (Ln5), [ErIII(NQ)(phen)(H2O)Cl2] (Ln6), and [YbIII(NQ)(phen)(H2O)Cl2] (Ln7), as potential anticancer drugs is described. Complexes Ln1-Ln7 exhibit high antiproliferative activity against cisplatin-resistant A549/DDP cells (IC50 = 0.025-0.097 μM) and low toxicity to normal HL-7702 cells. Moreover, complex Ln1, and to a lesser extent Ln7, can upregulate the expression of LC3 and Beclin1 and downregulate p62 to induce apoptosis in cisplatin-resistant A549/DDP cell lines, which is related to the cell autophagy-inducing properties of Ln1 and Ln7. Furthermore, in vivo assays suggest that Ln1 significantly inhibits A549/DDP xenograft tumor growth (56.5%). These results indicate that lanthanide(iii) complex Ln1 is a promising candidate as an anticancer drug against cisplatin-resistant A549/DDP cells.Indices based on the nucleus independent chemical shift (NICS) are the most frequently used in analysis of magnetic aromaticity. The magnetically induced current density, on the other hand, is a key concept in defining magnetic aromaticity. The integrated current strength (current strength susceptibility) was found to be a very useful tool in aromaticity studies. There is widely accepted notion that the properly chosen NICS-based index can provide information on the current density strength and direction in a molecule of interest. In this work, a detailed numerical testing of the relationship between the integrated bond current strength and the most employed NICS indices was performed for a set of 43 monocyclic aromatic molecules. Based on the statistical data analysis, the relationship between the bond current strength and its π and σ electron components, on one side, and the isotropic NICS (NICSiso and NICSπ,iso) and zz-component of the NICS tensor (NICSzz and NICSπ,zz), on the other side, was examined. It was found that between the NICSπ,zz(1) and π-electron bond current strenghts there is very good linear correlation. Quite surprisingly, it was revealed that the NICSiso(1) and NICSzz(1) are not correlated with the π electron bond current strengths. On the other hand, a reasonably good linear correlation was found between the NICSzz(1) and total bond current strengths.Recently, diimine Re(i) tricarbonyl complexes have attracted great interest due to their promising cytotoxic effects. Here, we compare the cytotoxicity and cellular uptake of two Re(i) compounds fac-[(Re(CO)3(bpy)(H2O)](CF3SO3) (1) and Na(fac-[(Re(CO)3(bpy)(S2O3)])·H2O (bpy = 2,2'-bipyridine) (2). The Re-thiosulfate complex in 2 was characterized in two solvated crystal structures Na(fac-[Re(CO)3(bpy)(S2O3)])·1.75H2O·C2H5OH4 (2 + 0.75H2O + C2H5OH)4 and (fac-[Re(CO)3(bpy)(H2O)]) (fac-[Re(CO)3(bpy)(S2O3)])·4H2O (3). The cytotoxicity of 1 and 2 was tested in the MDA-MB-231 breast cancer cell line and compared with that of cisplatin. XST-14 The cellular localization of the Re(i) complexes was investigated using synchrotron-based X-ray fluorescence microscopy (XFM). The results show that replacement of the aqua ligand with thiosulfate renders the complex less toxic most likely by distrupting its cellular entry. Therefore, thiosulfate could potentially have a similar chemoprotective effect against diimine fac-Re(CO)3 complexes as it has against cisplatin.Herein, we report an N-alkylation of pyrroles triggered by an unprecedented selective ring-expansive migration of the spiro-2H-pyrrole intermediates obtained via Ir-catalyzed asymmetric allylic dearomatization. The reaction affords a series of tetrahydropyrrolo[1,2-c]pyrimidine derivatives in good yields (up to 88%) with excellent enantioselectivity (up to >99% ee). The proposed reaction mechanism is supported by DFT calculations and the characterization of the key intermediate.Water-stable anionic Ln2L2-type (Ln = LaIII and EuIII) lanthanide-organic macrocycles have been constructed by deprotonation self-assembly of a bis-tridentate ligand consisting of two 2,6-bis-(1,2,4-triazole)-pyridine chelation arms bridged by a dibenzofuran chromophore, of which the luminescent Eu2L2 macrocycle can be used for enantiomeric excess (ee) detection toward pybox-type chiral ligands and selective colorimetric sensing of omethoate (OMA) in water.Highly efficient low-cost electrocatalysts play a key role in overall water splitting to generate hydrogen and oxygen. Herein, a self-supported hierarchical NiFeS/CoS nanosheet/nanowire bifunctional electrocatalyst for overall water splitting supported on nickel foam is synthesized by the combined process of hydrothermal and sulfurization methods. The specific wire-in-plate micromorphology of the catalyst provides the advantages of high contact area for electrolyte penetration, extensive active surface area and plentiful accessible active sites. Moreover, the quaternary catalyst in situ grown on the substrate guarantees mechanical stability. Reasonably, the as-obtained NiFeS/CoS catalyst with a unique wire-in-plate nanostructure shows good electrocatalytic performance toward the OER, HER and efficient overall water splitting. The NiFeS/CoS catalyst delivers 50 and 150 mA cm-2 at ultralow overpotentials of 170 and 150 mV toward the OER and HER, respectively. When simultaneously used as the electrocatalyst at both the cathode and the anode of an alkaline electrolyzer, the NiFeS/CoS electrocatalyst requires a cell voltage of 1.
Website: https://www.selleckchem.com/products/xst-14.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.