Notes
![]() ![]() Notes - notes.io |
The paper is comprised of an introduction and four more sections. Section 2 describes a summary of the imaging models of quantitative MR relaxometry. In Section 3, we review existing "classical" methods for accelerating MR relaxometry, including state-of-the-art spatiotemporal acceleration techniques, model-based reconstruction methods, and efficient parameter generation approaches. Section 4 then presents how deep learning can be used to improve MR relaxometry and how it is linked to conventional techniques. The final section concludes the review by discussing the promise and existing challenges of deep learning for rapid MR relaxometry and potential solutions to address these challenges.In the dermoscopic diagnosis of skin tumors, it remains unclear whether a deep neural network (DNN) trained with images from fair-skinned-predominant archives is helpful when applied for patients with darker skin. This study compared the performance of 30 Japanese dermatologists with that of a DNN for the dermoscopic diagnosis of International Skin Imaging Collaboration (ISIC) and Shinshu (Japanese only) datasets to classify malignant melanoma, melanocytic nevus, basal cell carcinoma and benign keratosis on the non-volar skin. The DNN was trained using 12 254 images from the ISIC set and 594 images from the Shinshu set. The sensitivity for malignancy prediction by the dermatologists was significantly higher for the Shinshu set than for the ISIC set (0.853 [95% confidence interval, 0.820-0.885] vs 0.608 [0.553-0.664], P less then 0.001). The specificity of the DNN at the dermatologists' mean sensitivity value was 0.962 for the Shinshu set and 1.00 for the ISIC set and significantly higher than that for the human readers (both P less then 0.001). The dermoscopic diagnostic performance of dermatologists for skin tumors tended to be less accurate for patients of non-local populations, particularly in relation to the dominant skin type. A DNN may help close this gap in the clinical setting.
The term 'visually induced analgesia' describes a reduced pain perception induced by watching the painful body part as opposed to watching a neutral object. In chronic back pain patients, experimental pain, movement-induced pain and habitual pain can be reduced with visual feedback. Visual feedback can also enhance the effects of both massage treatment and manual therapy. The impact of somatosensory attentional processes remains unclear.
In the current study, participants received painful electrical stimuli to their thumb and back while being presented with either a real-time video of their thumb or back (factor feedback). In addition, using an oddball paradigm, they had to count the number of deviant stimuli, applied to either their back or thumb (factor attention) and rate the pain intensity.
We found a significant main effect for attention with decreased pain ratings during attention. There was no main effect for visual feedback and no significant interaction between visual feedback and attention. Post-hoc tests revealed that the lowest pain intensity ratings were achieved during visual feedback of the back/ thumb and counting at the back/ thumb.
These data suggest that the modulation of perceived acute pain by visually induced analgesia may be influenced by a simultaneous somatosensory attention task.
Somatosensory attention reduced experimental pain intensity in the thumb and back in the presence of both congruent and incongruent visual feedback. We found no significant visual feedback effect on the complex interplay between visual feedback and somatosensory attention.
Somatosensory attention reduced experimental pain intensity in the thumb and back in the presence of both congruent and incongruent visual feedback. We found no significant visual feedback effect on the complex interplay between visual feedback and somatosensory attention.Recovery-oriented practice has become the dominant paradigm of practice in mental health services internationally. The exception is hospital-based mental health services where the biomedical model continues to prevail, in this context defined by high acuity and safety concerns. This review aims to identify the approaches to, and feasibility of, implementing recovery-oriented practice in hospital-based mental health services. A systematic review of the literature (2010-2019) identified seventeen studies of recovery-oriented practice implementation in hospital-based mental health services. One study was excluded based on quality assessment. Of the remaining studies, seven reported on staff training initiatives, four reported service user programmes facilitated by staff, and five were implementations of models of care. The findings indicate that it is feasible, albeit challenging, to implement recovery-oriented practice in hospital-based mental health services. More successful approaches are multimodal, applied over several years and have organizational support. The main barriers to implementation include resistance to change from the embedded, biomedical model, staff attitudes towards recovery, and an absence of consumer involvement in the implementation of recovery-oriented practice.DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.Hepatitis is an important health problem worldwide. Novel molecular targets are in demand for detection and management of hepatitis. Hepatoma-derived growth factor (HDGF) has been delineated to participate in hepatic fibrosis and liver carcinogenesis. However, the relationship between hepatitis and HDGF remains unclear. This study aimed to elucidate the role of HDGF during hepatitis using concanavalin A (ConA)-induced hepatitis model. In cultured hepatocytes, ConA treatment-elicited HDGF upregulation at transcriptional level and promoted HDGF secretion while reducing intracellular HDGF protein level and cellular viability. Similarly, mice receiving ConA administration exhibited reduced hepatic HDGF expression and elevated circulating HDGF level, which was positively correlated with serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. By using HDGF knockout (KO) mice, it was found the ConA-evoked cell death was prominently alleviated in KO compared with control. Besides, it was delineated HDGF ablation conferred protection by suppressing the ConA-induced neutrophils recruitment in livers. Above all, the ConA-mediated activation of tumor necrosis factor-α (TNF-α)/interleukin-1β (IL-1β)/interleukin-6 (IL-6)/cyclooxygenase-2 (COX-2) inflammatory signaling was significantly abrogated in KO mice. Treatment with recombinant HDGF (rHDGF) dose-dependently stimulated the expression of TNF-α/IL-1β/IL-6/COX-2 in hepatocytes, further supporting the pro-inflammatory function of HDGF. Finally, application of HDGF antibody not only attenuated the ConA-mediated inflammatory cascade in hepatocytes, but also ameliorated the ConA-induced hepatic necrosis and AST elevation in mice. In summary, HDGF participates in ConA-induced hepatitis via neutrophils recruitment and may constitute a therapeutic target for acute hepatitis.The expansion and transformation over time of dialysis therapies have been inexorably linked to the concept of adequacy. While initially the goal of dialysis was simple survival of patients until their next treatment, this changed with the publication of the National Cooperative Dialysis Study. It brought about a focus on defining adequate dialysis through measurements of the removal of small solutes, in particular urea. This spurred significant improvements in patient outcomes by standardizing therapy and providing benchmarks for each center to achieve. Over time, however, further research has found this narrow definition of adequacy to be insufficient to encompass the complexities of dialysis therapies. Factors such as residual kidney function (RKF), nutritional and volume status, and cardiovascular control all contribute to the outcomes for dialysis patients. We propose that an optimal definition of adequacy should not only focus on one factor but rather the interconnection and contribution to our patient's individual specific goals and their overall quality of life.The sensory nervous system (SNS) builds up the association between external stimuli and the response of organisms. In this system, habituation is a fundamental characteristic that filters out irrelevantly repetitive information and makes the SNS adapt to the external environment. To emulate this critical process in electronic devices, a Lix SiOy -based memristor (TiN/Lix SiOy /Pt) is developed where the temporal response under repetitive stimulation is similar to that of habituation. By connecting this synaptic device to a leaky integrate-and-fire neuron based on a Ag/SiO2 Ag/Au memristor, a fully memristive SNS with habituation is experimentally demonstrated. click here Finally, a habituation spiking neural network based on the SNS is built and its application in obstacle avoidance for robot navigation is successfully presented. The results provide that a direct emulation of the biologically inspired learning process by memristors could be a sound choice for neuromorphic hardware implementation.Single atom catalysts (SAC) for water splitting hold the promise of producing H2 in a highly efficient and economical way. As the performance of SACs depends on the interaction between the adsorbate atom and supporting substrate, developing more efficient SACs with suitable substrates is of significance. In this work, inspired by the successful fabrications of borophene in experiments, we systematically study the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) activities of a series of 3d transition metal-based SACs supported by various borophene monolayers (BMs=α_sheet, α1 _sheet, and β1 _sheet borophene), TM/BMs, using density functional theory calculations and kinetic simulations. All of the TM/BMs systems exhibit superior HER performance compared to Pt with close to zero thermoneutral Gibbs free energy (ΔGH* ) of H adsorption. Furthermore, three Ni-deposited systems, namely, Ni/α_BM, Ni/α1 _BM and Ni/β1 _BM, were identified to be superior OER catalysts with remarkably reduced overpotentials.
Here's my website: https://www.selleckchem.com/products/Eloxatin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team