Notes
Notes - notes.io |
The proposed CMPC holds promising application value in sustainability traffic road construction.Concretes with dispersed reinforcement are increasingly used in structural engineering. The basic source of knowledge on their application and design are the Model-Code 2010 guidelines. These guidelines, however, apply mainly to steel rebar reinforcement and are not fully sufficient in the analysis of the load-bearing capacity of elements made of concrete with dispersed reinforcement. Therefore, scientific research in this field is carried out continuously. The main goal of our work is to provide experimental data for the calibration of constitutive models of the cracking mechanics of concrete with reinforcement in the form of steel and polypropylene fibers. This article shows the possibility of using the digital image correlation system (DIC) to achieve this goal. The method of sample preparation and the method of conducting the tests were modeled on the recommendations contained in the PN-EN 14651 2007 standard. The tests were carried out on prismatic elements with a notch loaded in a three-point bending setup. The results of standard strength tests are presented in the form of column graphs and tables. As an extension, the results of calculations of energy dissipated in fracture process are given. Moreover, the experimentally obtained graphs of the relationship between the force, displacement and crack opening were presented, which were supplemented with the images of crack development obtained with the use of DIC. The development of the crack net is characterized not only qualitatively but also quantitatively as a function of deflection or crack mouth opening displacement. Conclusions concerning the adopted research methodology and the tested materials are presented at the end of the article.Flexible electronic devices are widely used in the Internet of Things, smart home and wearable devices, especially in carriers with irregular curved surfaces. Light weight, flexible and corrosion-resistant carbon-based materials have been extensively investigated in RF electronics. However, the insufficient electrical conductivity limits their further application. In this work, a flexible and low-profile dual-band Vivaldi antenna based on highly conductive graphene-assembled films (GAF) is proposed for 5G Wi-Fi applications. The proposed GAF antenna with the profile of 0.548 mm comprises a split ring resonator and open circuit half wavelength resonator to implement the dual band-notched characteristic. The operating frequency of the flexible GAF antenna covers the Wi-Fi 6e band, 2.4-2.45 GHz and 5.15-7.1 GHz. Different conformal applications are simulated by attaching the antenna to the surface of cylinders with different radii. The measured results show that the working frequency bands and the radiation patterns of the GAF antenna are relatively stable, with a bending angle of 180°. For demonstration of practical application, the GAF antennas are conformed to a commercial router. The spectral power of the GAF antenna router is greater than the copper antenna router, which means a higher signal-to-noise ratio and a longer transmission range can be achieved. All results indicate that the proposed GAF antenna has broad application prospects in next generation Wi-Fi.We report on self-propelled rotating liquid marbles fabricated using droplets of alcoholic solution encapsulated in hollow microtetrapods of GaN with hydrophilic free ends of their arms and hydrophobic lateral walls. Apart from stationary rotation, elongated-spheroid-like liquid marbles were found, for the first time, to exhibit pulsed rotation on water surfaces characterized by a threshold speed of rotation, which increased with the weight of the liquid marble while the frequency of pulses proved to decrease. To throw light upon the unusual behavior of the developed self-propelled liquid marbles, we propose a model which takes into account skimming of the liquid marbles over the water surface similar to that inherent to flying water lily beetle and the so-called helicopter effect, causing a liquid marble to rise above the level of the water surface when rotating.The application of concrete containing mineral admixtures was attempted in Northwest China in this study, where the environment has the characteristics of low humidity and large temperature variation. The harsh environment was simulated by using an environmental chamber in the laboratory and four types of concrete were prepared, including ordinary concrete and three kinds of mineral admixture concretes with different contents of fly ash and blast-furnace slag. These concretes were cured in the environmental chamber according to the real curing conditions during construction. The compression strength, fracture properties, SEM images, air-void characteristics, and X-ray diffraction features were researched at the early ages of curing before 28 d. The results showed that the addition of fly ash and slag can improve the compression strength and fracture properties of concrete in the environment of low humidity and large temperature variation. The optimal mixing of mineral admixture was 10% fly ash and 20% slag by replacing the cement in concrete, which can improve the compression strength, initial fracture toughness, unstable fracture toughness, and fracture energy by 23.9%, 25.2%, 45.3%, and 22.6%, respectively, compared to ordinary concrete. Through the analysis of the microstructure of concrete, the addition of fly ash and slag can weaken the negative effects of the harsh environment of low humidity and large temperature variation on concrete microstructure and cement hydration.The corrosion behavior of two silicon steels with the same chemical composition but different grains sizes (i.e., average grain area of 115.6 and 4265.9 µm2) was investigated by metallographic microscope, gravimetric, electrochemical and surface analysis techniques. The gravimetric and electrochemical results showed that the corrosion rate increased with decreasing the grain size. The scanning electron microscopy/energy dispersive x-ray spectroscopy and X-ray photoelectron spectroscopyanalyses revealed formation of a more homogeneous and compact corrosion product layer on the coarse-grained steel compared to fine-grained material. The Volta potential analysis, carried out on both steels, revealed formation of micro-galvanic sites at the grain boundaries and triple junctions. The results indicated that the decrease in corrosion resistance in the fine-grained steel could be attributed to the higher density of grain boundaries (e.g., a higher number of active sites and defects) brought by the refinement. The higher density of active sites at grain boundaries promote the metal dissolution of the and decreased the stability of the corrosion product layerformed on the metal surface.Additive manufacturing technologies, compared to conventional shaping methods, offer great opportunities in design versatility, for the manufacturing of highly porous ceramic components. However, the application to glass powders, later subjected to viscous flow sintering, involves significant challenges, especially in shape retention and in the achievement of a substantial degree of translucency in the final products. The present paper disclosed the potential of glass recovered from liquid crystal displays (LCD) for the manufacturing of highly porous scaffolds by direct ink writing and masked stereolithography of fine powders mixed with suitable organic additives, and sintered at 950 °C, for 1-1.5 h, in air. The specific glass, featuring a relatively high transition temperature (Tg~700 °C), allowed for the complete burn-out of organics before viscous flow sintering could take place; in addition, translucency was favored by the successful removal of porosity in the struts and by the resistance of the used glass to crystallization.A new generation of SBA-15, plugged SBA-15, was initially synthesized in 2002 using extra silica precursors (Si/organic template molar ratios ≈ 80-140) in the gel mixture. The plugged SBA-15 materials possess short cylinders (length ≈ 20-100 nm), which are connected to neighbors by constricted entrances (windows) through the central axis. The gas adsorption-desorption isotherms of plugged SBA-15 materials present unique hysteresis loop Type H5 classification identified by IUPAC in 2015, which is related to certain pore structures containing open and plugged mesopores. The plugged SBA-15 has been used to support various types of catalysts, including metal complexes, metal nanocatalysts, and active metals by the incorporation in their framework demonstrating excellent (enantio)selectivity, stability against coke, and thermal stability. The plugged SBA-15 materials bear the other unique properties of the ship-in-the-bottle synthesis of, e.g., metal complexes that confine homogeneous catalysts, which is not possible by conventional SBA-15 due to leaching. In this mini-review, the challenges and progress of the synthesis in controlling the plugging and incorporation of metals and organic moiety in their framework, characterizing the short mesochannel dimensions (window and length sizes) by several advanced techniques and applying plugged SBA-15 materials in heterogeneous catalysis for challenging reactions, has been discussed.Calcium phosphate (CaP) coatings are able to improve the osseointegration process due to their chemical composition similar to that of bone tissues. Among the methods of producing CaP coatings, the electrochemically assisted deposition (ECAD) is particularly important due to high repeatability and the possibility of deposition at room temperature and neutral pH, which allows for the co-deposition of inorganic and organic components. In this work, the ECAD of CaP coatings from an acetate bath with a CaP ratio of 1.67, was developed. The effect of the ECAD conditions on CaP coatings deposited on commercially pure titanium grade 4 (CpTi G4) subjected to sandblasting and autoclaving was presented. The physicochemical characteristics of the ECAD-derived coatings was carried out using SEM, EDS, FTIR, 2D roughness profiles, and amplitude sensitive eddy current method. It was showed that amorphous calcium phosphate (ACP) coatings can be obtained at a potential -1.5 to -10 V for 10 to 60 min at 20 to 70 °C. The thickness and surface roughness of the ACP coatings were an increasing function of potential, time, and temperature. The obtained ACP coatings are a precursor in the process of apatite formation in a simulated body fluid. The optimal ACP coating for use in dentistry was deposited at a potential of -3 V for 30 min at 20 °C.Ion implantation is a superior post-synthesis doping technique to tailor the structural properties of materials. Via density functional theory (DFT) calculation and ab-initio molecular dynamics simulations (AIMD) based on stochastic boundary conditions, we systematically investigate the implantation of low energy elements Ga/Ge/As into graphene as well as the electronic, optoelectronic and transport properties. It is found that a single incident Ga, Ge or As atom can substitute a carbon atom of graphene lattice due to the head-on collision as their initial kinetic energies lie in the ranges of 25-26 eV/atom, 22-33 eV/atom and 19-42 eV/atom, respectively. Owing to the different chemical interactions between incident atom and graphene lattice, Ge and As atoms have a wide kinetic energy window for implantation, while Ga is not. E64d purchase Moreover, implantation of Ga/Ge/As into graphene opens up a concentration-dependent bandgap from ~0.1 to ~0.6 eV, enhancing the green and blue light adsorption through optical analysis. Furthermore, the carrier mobility of ion-implanted graphene is lower than pristine graphene; however, it is still almost one order of magnitude higher than silicon semiconductors.
My Website: https://www.selleckchem.com/products/Aloxistatin.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team