Notes
Notes - notes.io |
The track size registered in the CR-39 has a good correlation with the particle LET. These findings indicate that the CR-39 can be used for measuring both the particle flux and its spatial distribution of carbon ions.Topological semimetals have attracted significant attentions owing to their potential applications in numerous fields such as low-power electron devices and quantum computation, which are closely related to their thermal transport properties. In this work, the phonon transport properties of topological Dirac nodal-line semimetals ZrGeX (X = S, Se, Te) with the PbFCl-type structures are systematically studied using the first-principles calculations combined with the Boltzmann transport theory. The obtained lattice thermal conductivities show an obvious anisotropy, which is caused by the layer structures of ZrGeX (X = S, Se, Te). The room-temperature lattice conductivity of ZrGeTe along c direction is found to be as low as 0.24 W/mK, indicating that it could be of great significance in the fields of thermal coating materials and solar cell absorber. In addition, we extract each phonon branch from group velocities, phonon scattering rates, Grüneisen parameters, and phase space volumes to investigate the mechanism underlying the low thermal conductivity. It is concluded that the difference of thermal conductivities of three materials may be caused by the number of scattering channels and the effect of anharmonic. Furthermore, the phonon mean free path along a direction is relatively longer. Nanostructures or polycrystalline structures may be effective to reduce the thermal conductivity and improve the thermoelectric properties.
The Utah electrode is used for pre/clinical studies on neural recording and stimulation. Anecdotal and empirical reports on their performance have been made, resulting in variable testing methods. An in depth investigation was performed to understand the electrochemical behaviour and charge transfer mechanisms occurring on these clinically important electrodes.
Platinum and iridium electrodes were assessed by cyclic voltammetry and electrochemical impedance spectroscopy. The effective electrode area was measured by reduction of Ru(NH3)63+.
Pristine Utah electrodes have little to no oxide present and the surface roughness is very low. Pristine iridium electrodes pass charge through capacitance and oxide formation. Hydride and anion adsorption occurs on the platinum electrode. Anodic current oxidises both metal surfaces, altering the charge transfer mechanisms at the electrode-solution interface. The charge storage capacity depends on measurement technique and electrode structure, providing no informationd the electrode behaviour. Electrode oxidation most likely accounts for a significant amount of variation in previously published Utah electrode impedance data.
Increasing electrode pseudocapacitance, demonstrated by metal oxidation, reduces impedance. Increasing electrode capacitance offers a potential route to reducing thermal noise and increasing signal-to-noise ratio of neural recording. The effective electrode area of conical electrodes can be measured. The charge density of the conical electrode was greater than expected on a planar disc electrode, indicating modification of electrode geometry can increase an electrodes safe charge injection capacity. In vivo electrochemical measurements often don't include sufficient details to understand the electrode behaviour. Electrode oxidation most likely accounts for a significant amount of variation in previously published Utah electrode impedance data.In this paper, titanium dioxide nanosheets (Ti0.91O2 NSs) were incorporated into bacterial cellulose (BC) film for dielectric property tuning while maintaining the flexibility of the resulting composite paper. By taking advantage of the improved dielectric constant, the nanosheets/BC composites were employed as capacitive sensors. The fabricated devices showed the highest sensing performance of ∼2.44 × 10-3 kPa-1 from 0 to 30 N when incorporating as little as 3 vol% of Ti0.91O2 NSs (or ∼2 wt% Ti). Stable operation and high robustness of the sensor were demonstrated, where simple human motions could be efficiently monitored. This study provided a route for preparing flexible and low-cost BC composite paper for capacitive sensor. The strategy for enhancing the dielectric properties as well as sensing performances of the BC demonstrated herein will be essential for the future development of biocompatible, low-cost, and eco-friendly wearable electronics.Two-dimensional (2D) semiconductors with desirable bandgaps and high carrier mobility have great potential in electronic and optoelectronic applications. In the present work, 2D M-ScN, H-ScN, and O-ScN are predicted by the swarm-intelligent global structure search method. The low formation energies and high dynamical and thermal stabilities indicate the high feasibility of experimental synthesis of these ScN monolayers. selleck chemical The electronic structure calculations reveal that M-ScN and O-ScN are both direct bandgap semiconductors with the bandgaps of 1.39 and 2.14 eV, respectively, while H-ScN has a large indirect bandgap of 3.21 eV. In addition, both M-ScN and H-ScN exhibit ultra-high electron mobilities (3.09 × 104 cm2 V-1 s-1 and 1.22 × 104 cm2 V-1 s-1, respectively). More notably, O-ScN is found to be a promising 2D auxetic and ferroelastic material. The values of negative Possion's ratios and reversible strain of this monolayer are predicted to be -0.27% and 15%, respectively.In some studies, electrocardiographic early repolarization pattern (ERP) has been associated with an increased risk of death from cardiac causes. However, little is known about the prognostic significance of ERP in the middle-aged and geriatric general populations. We investigated the prevalence and long-term prognostic significance of early repolarization pattern (ERP) on electrocardiograms (ECGs) in the Healthy Aging Longitudinal Study (HALST) cohort of 4615 middle-aged and geriatric community-dwelling Han Chinese adults from Taiwan. The study subjects were followed-up for 95±22 months. A positive ERP of ≥0.1 mV was observed in 889 (19.3%) of the subjects. Kaplan-Meier survival curve analysis showed that ERP was not associated with all-cause and cardiovascular mortality (log-rank test, P=0.13 and 0.84, respectively). Cox regression analysis after adjusting for covariables revealed that age, blood pressure, smoking, diabetes, stroke, chronic kidney disease, and corrected QT interval (QTc) were associated with increased risk of all-cause mortality (P less then 0.
My Website: https://www.selleckchem.com/products/pomhex.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team