Notes
![]() ![]() Notes - notes.io |
We have adapted 96-well plates to culture retinal precursors from the retina of chicken embryos at stage 29 of their development. In these primary cultures, cones represent 80% of the cells after in vitro differentiation. The cells degenerate over a period of one week in the absence of serum. Here, we describe the methods and its standardization. This cone-enriched culture system was used to identify the epithelium-derived cone viability factor (EdCVF) by high content screening of a rat retinal pigmented epithelium normalized cDNA library. Recombinant EdCVF prevents the degeneration of the cones.Chicken embryos are a classical model in developmental studies. During the development of chicken embryos, the time window of heart development is well-defined, and it is relatively easy to achieve precise and timely exposure via multiple methods. Moreover, the process of heart development in chicken embryos is similar to mammals, also resulting in a four-chambered heart, making it a valuable alternative model in the assessment of developmental cardiotoxicities. In our lab, the chicken embryo model is routinely used in the assessment of developmental cardiotoxicities following exposure to various environmental pollutants, including per- and polyfluoroalkyl substances (PFAS), particulate matter (PMs), diesel exhaust (DE) and nano materials. The exposure time can be freely selected based on the need, from the beginning of development (embryonic day 0, ED0) all the way to the day prior to hatch. The major exposure methods include air-cell injection, direct microinjection, and air-cell inhalation (originally developed in our lab), and the currently available endpoints include cardiac function (electrocardiography), morphology (histological assessments) and molecular biological assessments (immunohistochemistry, qRT-PCR, western blotting, etc.). Of course, the chicken embryo model has its own limitations, such as limited availability of antibodies. Nevertheless, with more laboratories starting to utilize this model, it can be used to make significant contributions to the study of developmental cardiotoxicities.Live-cell Imaging of Single-Cell Arrays (LISCA) is a versatile method to collect time courses of fluorescence signals from individual cells in high throughput. In general, the acquisition of single-cell time courses from cultured cells is hampered by cell motility and diversity of cell shapes. Adhesive micro-arrays standardize single-cell conditions and facilitate image analysis. LISCA combines single-cell microarrays with scanning time-lapse microscopy and automated image processing. Here, we describe the experimental steps of taking single-cell fluorescence time courses in a LISCA format. We transfect cells adherent to a micropatterned array using mRNA encoding for enhanced green fluorescent protein (eGFP) and monitor the eGFP expression kinetics of hundreds of cells in parallel via scanning time-lapse microscopy. The image data stacks are automatically processed by newly developed software that integrates fluorescence intensity over selected cell contours to generate single-cell fluorescence time courses. We demonstrate that eGFP expression time courses after mRNA transfection are well described by a simple kinetic translation model that reveals expression and degradation rates of mRNA. Further applications of LISCA for event time correlations of multiple markers in the context of signaling apoptosis are discussed.In an injured neonatal myocardium, macrophages facilitate cardiomyocyte proliferation and angiogenesis and promote heart regeneration. The present study reveals that transplantation of neonatal cardiac macrophages recruited by injury promotes adult heart regeneration after myocardial infarction with improvement of cardiac function and cardiomyocyte proliferation. The results indicate that neonatal cardiac macrophage transplantation could be a promising strategy for cardiac injury treatment. find more Here, we provide the technical details, including the isolation of neonatal cardiac macrophages from apical resection-injured neonatal mouse hearts, the transplantation of macrophages into myocardial-infarcted adult mice, and the estimation of heart regeneration after a macrophage graft.Analysis of biomarkers in peripheral blood is becoming increasingly important in clinical trials to establish proof of mechanism to evaluate effects of treatment, and help guide dose and schedule setting of therapeutics. From a single blood draw, peripheral blood mononuclear cells can be isolated and processed to analyze and quantify protein markers, and plasma samples can be used for the analysis of circulating tumor DNA, cytokines, and plasma metabolomics. Longitudinal samples from a treatment provide information on the evolution of a given protein marker, the mutational status and immunological landscape of the patient. This can only be achieved if the processing of the peripheral blood is carried out effectively in clinical sites and samples are properly preserved from the bedside to bench. Here, we present an optimized general-purpose protocol that can be implemented at clinical sites for obtaining PBMC pellets and plasma samples in multi-center clinical trials, that will enable clinical professionals in hospital laboratories to successfully provide high quality samples, regardless of their level of technical expertise. Alternative protocol variations are also presented that are optimized for more specific downstream analytical methods. We apply this protocol for studying protein biomarkers against DNA damage response (DDR) on X-ray irradiated blood to demonstrate the suitability of the approach in oncology settings where DDR drugs and/or radiotherapy have been practiced as well as in preclinical stages where mechanistic hypothesis testing is required.Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), EEG-fMRI, combines the complementary properties of scalp EEG (good temporal resolution) and fMRI (good spatial resolution) to measure neuronal activity during an electrographic event, through hemodynamic responses known as blood-oxygen-level-dependent (BOLD) changes. It is a non-invasive research tool that is utilized in neuroscience research and is highly beneficial to the clinical community, especially for the management of neurological diseases, provided that proper equipment and protocols are administered during data acquisition. Although recording EEG-fMRI is apparently straightforward, the correct preparation, especially in placing and securing the electrodes, is not only important for safety but is also critical in ensuring the reliability and analyzability of the EEG data obtained. This is also the most experience-demanding part of the preparation. To address these issues, a straightforward protocol that ensures data quality was developed. This article provides a step-by-step guide for acquiring reliable EEG data during EEG-fMRI using this protocol that utilizes readily available medical products. The presented protocol can be adapted to different applications of EEG-fMRI in research and clinical settings, and may be beneficial to both inexperienced and expert operators.Discovering mechanisms that pattern dendritic arbors requires methods to visualize, image, and analyze dendrites during development. The mouse retina is a powerful model system for the investigation of cell type-specific mechanisms of neuronal morphogenesis and connectivity. The organization and composition of retinal subtypes are well-defined, and genetic tools are available to access specific types during development. Many retinal cell types also constrain their dendrites and/or axons to narrow layers, which facilitates time-lapse imaging. Mouse retina explant cultures are well suited for live-cell imaging using confocal or multiphoton microscopy, but methods optimized for imaging dendrite dynamics with temporal and structural resolution are lacking. Presented here is a method to sparsely label and image the development of specific retinal populations marked by the Cre-Lox system. Commercially available adeno-associated viruses (AAVs) used here expressed membrane-targeted fluorescent proteins in a Cre-dependent manner. Intraocular delivery of AAVs in neonatal mice produces fluorescent labeling of targeted cell types by 4-5 days post-injection (dpi). The membrane fluorescent signals are detectable by confocal imaging and resolve fine branch structures and dynamics. High-quality videos spanning 2-4 h are acquired from imaging retinal flat-mounts perfused with oxygenated artificial cerebrospinal fluid (aCSF). Also provided is an image postprocessing pipeline for deconvolution and three-dimensional (3D) drift correction. This protocol can be used to capture several cellular behaviors in the intact retina and to identify novel factors controlling neurite morphogenesis. Many developmental strategies learned in the retina will be relevant for understanding the formation of neural circuits elsewhere in the central nervous system.Mechanical forces transmitted at the junction between two neighboring cells and at the junction between cells and the extracellular matrix are critical for regulating many processes ranging from development to immunology. Therefore, developing the tools to study these forces at the molecular scale is critical. Our group developed a suite of molecular tension sensors to quantify and visualize the forces generated by cells and transmitted to specific ligands. The most sensitive class of molecular tension sensors are comprised of nucleic acid stem-loop hairpins. These sensors use fluorophore-quencher pairs to report on the mechanical extension and unfolding of DNA hairpins under force. One challenge with DNA hairpin tension sensors is that they are reversible with rapid hairpin refolding upon termination of the tension and thus transient forces are difficult to record. In this article, we describe the protocols for preparing DNA tension sensors that can be "locked" and prevented from refolding to enable "storing" of mechanical information. This allows for the recording of highly transient piconewton forces, which can be subsequently "erased" by the addition of complementary nucleic acids that remove the lock. This ability to toggle between real-time tension mapping and mechanical information storing reveals weak, short-lived, and less abundant forces, that are commonly employed by T cells as part of their immune functions.Tissue engineering is a cutting-edge discipline in biomedicine. Cell culture techniques can be applied for regeneration of functional tissues and organs to replace diseased or damaged organs. Scaffolds are needed to facilitate the generation of three-dimensional organs or tissues using differentiated stem cells in vivo. In this report, we describe a novel method for developing vascularized scaffolds using decellularized rat kidneys. Eight-week-old Sprague-Dawley rats were used in this study, and heparin was injected into the heart to facilitate flow into the renal vessels, allowing heparin to perfuse into the renal vessels. The abdominal cavity was opened, and the left kidney was collected. The collected kidneys were perfused for 9 h using detergents, such as Triton X-100 and sodium dodecyl sulfate, to decellularize the tissue. Decellularized kidney scaffolds were then gently washed with 1% penicillin/streptomycin and heparin to remove cellular debris and chemical residues. Transplantation of stem cells with the decellularized vascular scaffolds is expected to facilitate the generation of new organs.
My Website: https://www.selleckchem.com/products/NVP-AEW541.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team