Notes
Notes - notes.io |
They also significantly increased LDH leakage, enhanced oxidative stress via effects on antioxidative markers, and caused metabolic stress by significantly decreasing ATPase levels. N-SNPs caused extensive ultrastructural alterations in cell and nuclear structures, as well as in various organelles. Furthermore, N-SNPs triggered apoptosis via the activation of caspase 3 and p53, and suppressed the mTOR signaling pathway via downregulating apoptosis-evading proteins in MCF-7, HCT-116, and HepG2 cells. Ultrastructural analysis, together with biochemical and molecular analyses, revealed that N-SNPs enhanced apoptosis via the induction of oxidative stress and/or through direct interactions with cellular structures in all tested cells. The cytotoxicity of Nostoc-mediated SNPs represents a new strategy for cancer treatment via targeting various cell death pathways. However, the potential of N-SNPs to be usable and biocompatible anticancer drug will depend on their toxicity against normal cells.We consider single chain force measurements to unravel characteristics of polymers at interfaces and to determine parameters that control adsorption or probe layer characteristics that are difficult to access otherwise. The idea is to have at the tip of an atomic force microscope (AFM), a probe chain and measure its behaviour near interfaces by pushing it to, or pulling it away from it. The self-consistent field modeling of this reveals that in the pulling mode-i.e., when the chain has an affinity for the surface-a typically inhomogeneous flower-like conformation forms with an adsorbed 'pancake' and a stretched stem (tether) from the surface to the tip of the AFM. When about half the segments is in the tether it snaps loose in a first-order like fashion. The critical distance of the end-point from the surface and the critical force are experimentally accessible. Details of this transition depend on the surrounding of the test chain. Inversely, and this opens up many possibilities, the test chain reports about its surroundings. Our focus is on the classical case of homopolymers at interfaces. Pulling experiments may reveal the adsorption strength, the (average) chain length and/or the polymer concentration of the freely dispersed/adsorbed polymers. When the test-chain is non-adsorbing we envision that pushing this test-chain into the adsorption layer reports about various layer characteristics such as the layer thickness and (local) density. Moreover, when the test-chain has a length longer than the entanglement length, we can imagine that non-trivial dynamical properties of loops and tails may be scrutinised.In recent years, vessels have been discovered that contain the remains of wine with an age close to 7000 years. It is unclear whether, in ancient times, humans accidentally stumbled across fermented beverages like wine or beer, or was it a product intended as such. What is a fact is that since then, alcoholic beverages have been part of the diet and culture of many of the civilizations that have preceded us. The typical examples of beer and wine are an example of many other drinks resulting from the action of yeasts. In addition to these two beverages, various companies have developed other types of fermented foods and non-alcoholic beverages prepared in a traditional or commercial manner. The climatic conditions, the availability of raw material and the preferences of each region have conditioned and favored the maintenance of some of these products. In addition to the aforementioned traditional alcoholic beverages produced from fruits, berries, or grains, humans use yeast in the production of chemical precursors, global food processing such as coffee and chocolate, or even wastewater processing. Yeast fermentation is not only useful in food manufacturing. Its uses extend to other products of high interest such as the generation of fuel from vegetable sources.Surface functionalization is an effective approach to change the surface properties of a material to achieve a specific goal such as improving the biocompatibility of the material. Here, the surface of the commercial biomedical Ti-6Al-7Nb alloy was functionalized through synthesizing of a porous surface layer by liquid metal dealloying (LMD). During LMD, the Ti-6Al-7Nb alloy is immersed in liquid magnesium (Mg) and both materials react with each other. Particularly, aluminum (Al) is selectively dissolved from the Ti-6Al-7Nb alloy into liquid Mg while titanium (Ti) and niobium (Nb) diffuse along the metal/liquid interface to form a porous structure. We demonstrate that the porous surface layer in the Ti-6Al-7Nb alloy can be successfully tailored by LMD. Furthermore, the concentration of harmful Al in this porous layer is reduced by about 48% (from 5.62 ± 0.11 wt.% to 2.95 ± 0.05 wt.%) after 30 min of dealloying at 1150 K. The properties of the porous layer (e.g., layer thickness) can be tuned by varying the dealloying conditions. In-vitro tests suggest improved bone formation on the functionalized porous surface of the Ti-6Al-7Nb alloy.The crystallization kinetics of metallocene-catalyzed heterophasic isotactic polypropylene composed of a matrix of isotactic polypropylene (iPP) and rubbery particles made of random ethylene-propylene copolymers (EPC), often denoted as heterophasic iPP copolymers, was analyzed as a function of the cooling rate and supercooling in nonisothermal and isothermal crystallization experiments, respectively. Fast scanning chip calorimetry (FSC) allowed assessing crystallization at processing-relevant conditions, and variation of the content (0-39 wt %) and composition (0-35 wt % propylene counits) of the EPC particles revealed qualitatively new insight about mechanisms of heterogeneous crystal nucleation. For neat iPP homopolymer, the characteristic bimodal temperature dependence of the crystallization rate due to predominance of heterogeneous and homogeneous crystal nucleation at high and low temperatures, respectively, is reconfirmed. At high temperatures, in heterophasic iPP, the here studied ethylene-(C2)-rich EPC particles accelerate crystallization of the iPP-matrix, with the acceleration or nucleation efficacy correlating with the EPC-particle content. The crystallization time reduces by more than half in presence of 39 wt % EPC particles. An additional nucleating effect of the EPC particles on iPP-matrix crystallization is detected after their crystallization, suggesting that liquid/rubbery particles are less effective than solid/semicrystalline particles in affecting crystallization of the surrounding iPP-matrix. At low temperature, homogeneous crystal nucleation in the iPP-matrix outpaces all heterogeneous nucleation effects, and the matrix-crystallization rate is independent of the sample composition. Poly(vinyl alcohol) The obtained results lead to the conclusion that the crystallization kinetics of iPP can be affected significantly by the content and composition of EPC particles, even towards superfast crystallizing iPP grades.
My Website: https://www.selleckchem.com/products/poly-vinyl-alcohol.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team