Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
FTIR analyses indicate that hydrolytic degradation of ester bonds occurred, and a significant reduction of molecular weight was observed. TGA and NMR confirmed degradation of biodegradable polymers. Our results indicate that biodegradable plastic mulches degrade in soil, but at different rates in different climates and that degradation occurs over several years. Faster degradation occurred in compost, making composting a viable disposal method, especially in cool climates, where mulch fragments in soil may persist for many years. According to the World Health Organization, >360 million people worldwide suffer from mental diseases such as depression, anxiety, or bipolar disorder, for which psychotropic drugs are frequently prescribed. Despite being highly metabolized in the human organism, non-metabolized portions of these drugs are excreted, subsequently reaching wastewater treatment plants (WWTPs), where they may be incompletely removed during treatment, leading to the contamination of surface waters. In this work, ten psychotropic drugs widely consumed in Brazil (alprazolam, amitriptyline, bupropion, carbamazepine, clonazepam, escitalopram, fluoxetine, nortriptyline, sertraline, and trazadone) were monitored at five WWTPs located in the metropolitan region of Campinas (São Paulo State, Brazil). The drugs were determined in the influents, at different stages of the treatments, and in the effluents. Surface waters from the Atibaia River and the Anhumas Creek were also monitored. Quantitation of the pharmaceuticals was carried out by online solid-phase extraction coupled with ultra-high performance liquid chromatography and tandem mass spectrometry. The method was validated and presented a limit of quantitation of 50 ng L-1 for all the drugs assessed. Six of the substances monitored were quantified in the samples collected from the different treatment processes employed at the WWTPs. These technologies were unable to act as barriers for these psychotropics drugs. The concentrations ranged from 50 to 3000 ng L-1 in the WWTP effluents, while the main contaminants were found in surface waters at concentrations from 25 to 3530 ng L-1. The levels of the psychotropic detected in this work did not appear to present risks to the aquatic biota. Biofuel stoves are an important source of black carbon (BC) emissions, which have adverse effects on the environment and human health, especially in rural areas. However, there have been only limited studies of BC emissions from residential biofuel stoves based on real-time measurements. In this study, a photo-acoustic extinctiometer (PAX)-based real-time measurement system was employed to monitor the emission characteristics of corncobs, corn stalks, cotton stalks and poplar branches in simple or improved stoves (with a total of 16 units) in Hebei Province, China. The real-time and phased emissions of BC, fine particulate matter (PM2.5), carbon monoxide (CO) and carbon dioxide (CO2) were assessed, and the effects of stove type and fuel on emissions were analyzed. Under the same conditions, polar branches were associated with the highest BC emission factors (EFs) of up to 2.64 ± 0.42 g kg-1, while the EFs for improved stoves were higher than those for simple stoves. During the ignition phase, BC emissions were found to be low, while the later addition of fuel dramatically increased emissions, followed by a gradual decrease until the next fuel addition. The phased results show that the flaming phase had the highest BC emission rate, the fuel addition phase was associated with the highest BC EF. The BC emission rates and EFs for the ignition, fuel addition, flaming and smoldering phases ranged from 0.0014-0.014, 0.11-6.32, 0.18-2.24 and 0.03-0.32 mg s-1, and from 0.04-0.18, 0.38-9.53, 0.45-3.55 and 0.12-1.01 g kg-1, respectively. This study assessed the BC emissions from residential biofuel stoves using a larger sample size than in prior work. The results increase our understanding of the BC emissions process, which is helpful in terms of improving the accuracy of BC EF estimations. The real-time measurement process described herein is also expected to provide new approaches to minimizing BC emissions. Managed aquifer recharge (MAR) systems can be designed and operated to improve water supply and quality simultaneously by creating favorable conditions for contaminant removal during infiltration through shallow soils. We present results from laboratory flow-through column experiments, using intact soil cores from two MAR sites, elucidating conditions that are favorable to nitrate (NO3) removal via microbial denitrification during infiltration. Experiments focused on quantitative relations between infiltration rate and the presence or absence of a carbon-rich permeable reactive barrier (PRB) on both amounts and rates of nitrate removal during infiltration and associated shifts in microbial ecology. Experiments were conducted using a range of infiltration rates relevant to MAR (0.3-1.4 m/day), with PRBs made of native soil (NS), woodchips (WC) and a 5050 mixture of woodchips and native soil (MIX). The latter two (carbon-rich) PRB treatments led to statistically significant increases in the amount of nitrate removed by increasing zero-order denitrification rates, both within the PRB materials and in the underlying soil. The highest fraction of nitrate removal occurred at the lowest infiltration rates for all treatments. 3-AP price However, the highest nitrogen mass removal (∆NL) was observed at 0.4-0.7 m/day for both the WC and MIX treatments. In contrast, the maximum ∆NL for the NS treatment was observed at the lowest infiltration rates measured (~0.3 m/day). Further, both carbon-rich PRBs had a substantial impact on the soil microbial ecology in the underlying soil, with lower overall diversity and a greater relative abundance of groups known to degrade carbon and metabolize nitrogen. These results demonstrate that infiltration rates and carbon availability can combine to create favorable conditions for denitrification during infiltration for MAR and show how these factors shape and sustain the microbial community structures responsible for nutrient cycling in associated soils.
Homepage: https://www.selleckchem.com/products/triapine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team