Notes
Notes - notes.io |
In addition, composite microcarriers that incorporate multiple material types or that are mineralized biomimetically are included. In each case, the fabrication, processing, characterization, and resulting function of the microcarriers is described, with an emphasis on their ability to support osteogenic differentiation of progenitor cells in vitro, and their effectiveness in healing bone defects in vivo. In addition, a summary of the current state of the field is provided, as are future perspectives on how microcarrier technologies may be enhanced to create improved cell-based therapies for bone regeneration.The optical transition properties of trivalent rare earth (RE3+) doped luminescent materials have received extensive attention. The Judd-Ofelt theory is an effective tool for exploring the optical transition properties for the 4f-4f transitions of lanthanides. The aim of this work is to discover the effect of Er3+ concentration and different Ln3+ ions on the Judd-Ofelt parameters in LnOClEr3+ (Ln = Y, La, Gd) phosphors. Oxychloride LnOClEr3+ (Ln = Y, La, Gd) phosphors were produced via a single displacement reaction technique. The Judd-Ofelt calculation procedure for RE3+ doped powders was modified and then adopted to obtain the Judd-Ofelt parameters of Er3+ in the studied phosphors. Meanwhile, a new route for examining the Judd-Ofelt calculation quality was proposed and used. It was found that the Er3+ doping concentration slightly affects the optical transition properties of Er3+ in YOCl and LaOCl, but greatly affects the optical transition properties in GdOCl. Moreover, it was also found that the optical transition properties of Er3+ depend also on Ln3+ (Ln = Y, La, Gd) though the crystal structure of these compounds is similar. The Judd-Ofelt parameters of Er3+ are the smallest in LaOClEr3+, medium in YOClEr3+, but the biggest in GdOClEr3+ when the doping concentration is the same.Tumor cell-targeting drug delivery systems are of great importance to anti-tumor therapy in clinics. Owing to the overexpression of the asialoglycoprotein receptor (ASGPR) on the membrane of hepatoma carcinoma cells, the conjugation of lactose on the surface of drug delivery systems has already shown significant advantages for targeting tumor cells. In this study, a disulfide bond-conjugated prodrug targeting delivery system consisting of camptothecin (CPT) and lactose (LA) was synthesized, which was denoted as CPT-S-S-LA. Camptothecin and lactose act as the chemotherapy drug and targeting ligand in the drug delivery system, respectively. Since CPT-S-S-LA is an amphiphilic compound, it can self-assemble into nanoparticles with a diameter of around 110 nm. The CPT-S-S-LA nanoparticles displayed controllable drug release behavior in the physiological environment. Unlike the free CPT, the CPT-S-S-LA nanoparticles firstly assembled at the tumor sites via the enhanced permeability and retention (EPR) effect, and then were phagocytized by the tumor cells with ASGP receptor-mediated endocytosis. Finally, the antitumor agent CPT was released for killing tumor cells, which have a high glutathione (GSH) concentration environment. The nanoparticles displayed favorable ability to target hepatoma carcinoma cells rather than the normal HUVEC cells in vitro. Both the in vitro and in vivo studies demonstrated that the CPT-S-S-LA nanoparticles display enhanced antitumor ability and reduced side effects. Thus, active targeting prodrug delivery systems should be a promising strategy for liver tumor therapy.Developing physical hydrogels with advanced mechanical performance and multi-functionalities as alterative materials for load-bearing soft tissues remains a great challenge. Biological protein-based materials generally exhibit superior strength and toughness owing to their hierarchical structures via hydrogen-bonding assembly. Inspired by natural biological protein materials, tannic acid (TA) is exploited as a molecular coupling bridge between cellulose nanocrystals (CNCs) and poly(vinyl alcohol) (PVA) chains for the fabrication of a bio-based advanced physical hydrogel via strong multiple H-bonds. When exposed to mechanical stress, the sacrificial H-bonds can dissipate energy effectively on the molecular scale via dynamic rupture and reformation, endowing these biomimetic hydrogels with remarkable toughness, ultrahigh strength, large elongation, and good self-recoverability, which are much superior to those of most hydrogen bond-based hydrogels. Moreover, the characteristics of TA endow these biomimetic hydrogels with versatile adhesiveness and good antibacterial properties. This work presents an innovative biomimetic strategy for robust biocompatible hydrogels with superior mechanical strength and functionalities, which holds great promise for applications in tissue engineering and biomedical fields.The peculiar properties of ionic liquids in confinement have not only become essential for energy storage, catalysis and tribology, but still pose fundamental questions. Recently, an anomalous liquid-solid phase transition has been observed in atomic force microscopy experiments for 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), the transition being more pronounced for metallic surfaces. Image charges have been suggested as the key element driving the anomalous freezing. Using atomistic molecular dynamics simulations, we investigate the impact of image charges on structure, dynamics and thermodynamics of [BMIM][BF4] confined between gold electrodes. Our results not only unveil a minor role played by the metal polarisation, but also provide a novel description of the interfacial layer. Although no diffuse layer can be defined in terms of the electrostatic potential, long range effects are clearly visible in the dynamical properties up to 10 nanometers away from the surface, and are expected to influence viscous forces in the experiments.The concept of single atom catalysts (SACs) originated from reducing the amount of noble metals used, by steadily refining the particle size loaded on a substrate surface. It has been rapidly moving to non-noble elements and their compounds in recent years, notably transition metals and even non-metals. They are of heterogeneous types, where the active species are refined to atomic dispersion scales on the surfaces/sub-surfaces of the solid support. The catalytic performance is governed by both the type and population of accessible active sites, and their bond and coordination environment, largely as a result of the interactions with the substrate surface. Unlike the internal structure within a crystalline solid, there is a large spatial variation in the bond and coordination environment of different atoms on the solid surface across different length scales, and in particular with the unsaturated surface, where there are various defects. Dinaciclib mw They can also be dramatically altered during both the catalyst synthesis and actual catalysis process.
Here's my website: https://www.selleckchem.com/products/dinaciclib-sch727965.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team