Notes
![]() ![]() Notes - notes.io |
to treat wastewater containing toxic elements and dyes.Herein, the facile synthesis of copper(II) and benzene-1,3,5-tricarboxylate (Cu-BTC) and copper nanoporous carbon (Cu@NPC) for the electrochemical detection of diphenylamine (DPA) was systematically investigated. The Cu-BTC and Cu@NPC materials structural, morphological, and thermal stability were evaluated and confirmed using FE-SEM, HR-TEM, XRD, FT-IR, and TGA. The electrocatalytic behavior of sensor materials was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It is presumed that the structural stability and synergic effect exhibited in Cu@NPC are favorable for enhanced sensitivity and selectivity towards the detection of DPA. The Cu@NPC exhibited a wide linear range (0.09-396.82 μM) and the lowest limit of detection (5 nM). Furthermore, the real sample analysis of the sensor for the detection of DPA in apples and pears confirms its potential capability in practical application.It is well accepted that shooting ranges constitute hotspots of Pb contamination. This study evaluated the degree of Pb contamination of soils, sediments and vegetation within the boundaries of a highly visited shooting range, as well as the fluvial transport and dispersal of Pb, and therefore the contamination of adjacent river and water reservoir. Soils in the shooting range were severely contaminated with Pb, as indicated by the values of enrichment and contamination factor. The concentration of Pb in these soils ranged from 791 mg kg-1 to 7265 mg kg-1, being several dozens or even hundreds of times higher compared with control background samples. A temporary stream being in close proximity was also polluted, though to a much lesser extent. The degree of Pb contamination was negatively correlated with the distance from the shooting range. To this effect, the degree of contamination of the river and the water reservoir being in the vicinity of the shooting range was negligible, as sediments and water samples preserved similar Pb concentrations with control samples. However, cultivated (olives) and wild native plant species grown in the area of the shooting range were found to uptake and accumulate high concentrations of Pb in their tissues (even 50 times higher compared with control samples). The severe contamination of soils, sediments and vegetation in the studied shooting range can provoke very high ecological risks. Overall, results suggest that management measures should be undertaken within the boundaries of the studied shooting range.Peroxymonosulfate (PMS)-based advanced oxidation processes for wastewater treatment have received extensive attention in the past years. Here, a novel Mn, Ce co-modified g-C3N4 (MnCe-CN) composite was successfully synthesized by one-step pyrolysis for activating PMS. The physical and chemical characterization of MnCe-CN/PMS was conducted, indicating that Mn and Ce were evenly distributed on g-C3N4 and existed in the form of Mn-N structure and CeO2, respectively. The MnCe-CN/PMS system could effectively degrade pollutants such as acetaminophen (ACT), methylparaben (MeP), p-nitrophenol (PNP), and 2,4-dichlorophenol (2,4-DCP). Among them, 2,4-DCP could be rapidly degraded, reaching 100% within 30 min. The masking experiments and electrochemical testing results revealed that 2,4-DCP was degraded via superoxide radicals (O2˙-), singlet oxygen (1O2), and electron transfer path. The cyclic experiments and real water treatment experiments testified that the oxidative system had excellent stability and applicability. This study provides a facile synthetic method to fabricate bimetallic co-modified g-C3N4 for the enhancement of PMS activation.The petroleum fuel demand with high price and its exhaustion imposes a pressure to find an alternative. Selleck BLU-945 The fossil fuel shortage has been deteriorating over the past few years, because of the rapid increase in population. Many attempts have been made to increase the quality of biofuel with additives. In this paper, two types of nanoparticles such as carbon nanotubes (CNT) and alumina (Al2O3) in chlorella microalgae biofuel were analyzed by experimental method. The added CNT and alumina act as a catalyst that induces complete combustion with retarded emissions. In addition to above, the noise and vibration qualities are also measured. A series of test conducted using single cylinders, four stroke, naturally aspirated compression ignition diesel engine was run by using pure diesel and also different fuel blends 'such as B10CNT50A50 Chlorella (Microalgae Biodiesel 10% + Diesel 90% + CNT 50 ppm), B20CNT50A50 (Microalgae Biodiesel 20% + Diesel 80% + CNT 50 ppm + Al2O3 50 ppm) and B30CNT50A50 (Microalgae Biodiesel 30% + Diesel 70% + CNT 50 ppm + Al2O3 50 ppm). At a constant load condition, all experimental tests were conducted at four different speeds such as 1500 rpm, 2000 rpm, 2500 rpm and 3000 rpm. The reference fuel of diesel B0 results was compared with blended fuel. From the results, it has been found that the nano additives of CNT and alumina reduced the greenhouse gas emissions of CO compared to plain diesel. Only considering the blended fuel, as the percentage of biofuel increases, the emission of nitric oxide and carbon dioxide is decreased with significant reduction in the amount of noise and vibration and also the combustion and performance qualities were also improved. The highest benefit in terms of all factors was achieved in the fuel blend of B30A50CNT50 amongst the other blends.Triphenyl phosphate (TPhP), a widely used aromatic organophosphate flame retardant, is known to accumulate in organisms through water, air, and soil, consequently, causing toxicity. This study is the first to evaluate the acute and sub-chronic toxicities of TPhP to amphibians. In the acute toxicity analysis, the 96-h median lethal concentration (LC50) for GS35 Hoplobatrachus rugulosus tadpoles was 2.893 mg/L, and the 10% effect concentration (EC10) was 289 μg/L. After two weeks of exposure to low TPhP concentrations, the survival and metamorphosis rates of H. rugulosus tadpoles decreased, and the metamorphosis time was prolonged as the TPhP concentration increased. The threshold concentration that affected tadpole survival and metamorphosis time was 50 μg/L and 100 μg/L, respectively. No significant differences were observed in the condition factor and hepatic somatic index of the tadpole after metamorphosis; however, tadpole body mass and TPhP concentration were negatively correlated. Further, TPhP inhibited the expressions of Cu-Zn sod and cat, thereby reducing the activities of superoxide dismutase and catalase in the tadpole liver. The threshold for affecting gene expression and enzymatic activity was 100 μg/L. These findings provide significant insights on the stress ecology of aquatic organisms.Organic dyes, a type of high toxic and carcinogenic chemicals that present severe threats to human and aquatic life, are the most commonly seen organic pollutants in wastewater of industries such as textile, rubber, cosmetic industry etc. Various techniques for the removal of dyes are compared in this review. Adsorption has proven to be a facile and promising approach for the removal of dyes in wastewater. This work focuses on the latest development of various porous materials for the adsorption of organic dyes. The characteristics, functionalization and modification of different porous materials are also presented. Furthermore, adsorption behaviors and mechanism of these adsorbents in the adsorption of organic dyes are critically reviewed. Finally, challenges and opportunities for future research in the development of novel materials for the highly efficient removal of dyes are proposed.The air concentrations of organophosphate esters (OPEs) were studied in a network of six remote high-mountain areas of the Pyrenees located along an altitudinal profile between 1619 m and 2453 m above sea level on a restricted planar surface to assess their vertical distribution based on long-range atmospheric transport and temperature gradients. Polyurethane foam passive samplers were used in five periods spanning over three years (September 2017-October 2020). The sum of concentrations of five OPEs were between 5.3 and 100 pg m-3, averaging 16-53 pg m-3 across campaigns at the different locations. These concentrations were much lower than those observed in areas under anthropogenic influence but also than those found in low altitude remote continental sites. A significant progressive change in predominant compounds was observed along the altitudinal gradient, with prevalence of tris(1-chloro-2-propyl) phosphate (TCIPP) or tris(2-chloroethyl) phosphate (TCEP) below or above 2300 m above sea level, respectively. This trend was consistent with the higher volatility of TCEP, which was retained at greater extent at lower environmental temperatures (higher altitude). A significant temperature dependence of the gas phase concentrations was observed for TCEP, TCIPP and triphenyl phosphate (TPHP), which could be explained by retention in the cold periods, predominantly adsorbed in snow, and their release to the atmosphere during snowmelt. This mechanism was consistent with the good agreement found between the vaporization enthalpies measured under laboratory conditions and the experimental values obtained from the slopes of the significant linear regressions when representing the vertical gradients.Bisphenol A (BPA) is a typical kind of endocrine disruption chemical, which has a negative effect on human health, and thus it is necessary to remove BPA from water. Herein, activation of peroxymonosulfate (PMS) by Fe, Cu-Coordinated ZIF-Derived Carbon Framework bifunctional catalyst (Fe/Cu@NC-x) fabricated via hydrothermal-calcination method for BPA removal. The physicochemical properties of Fe/Cu@NC-x were studied by X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy, Raman Spectroscopy, Brunauer-Emmett Teller, and X-ray photoelectron spectroscopy. The effects of the Fe/Cu@NC-900 dosage and PMS concentration, initial pH, and co-existing anions on BPA degradation were evaluated. Under optimized factors (pH unadjusted, Fe/Cu@NC-900 = 0.2 g/L, and PMS = 0.75 g/L), the degradation efficiency of BPA can reach 98% after 30 min. In addition, the BPA degradation efficiency was different extents restrain by inorganic anions (SO42- > Cl- > HCO3- > NO3-). Furthermore, the free radicals (SO4-·, ·OH, and O2-·) and non-radical (1O2) contribute to rapid BPA degradation in Fe/Cu@NC-900/PMS system. This study presents a novel material with significant performance for the removal of organic pollutants.Metal-organic framework (MOFs)-based composites have been popular in photocatalysis due to their outstanding physicochemical properties, such as large surface area, high activity and good transmission properties. Herein, a method of ionic liquids (ILs)-assisted synthesis of IL/MIL-68(In)-NH2 composite materials were proposed, and composites were used for visible light catalytic degradation of doxycycline hydrochloride (DOXH). The effects of four kinds of ionic liquids on the structure and photocatalytic properties of the composites were explored, including diethylenetriamine acetate ([DETA][OAc]), diethylenetriamine hexafluorophosphate ([DETA][PF6]), 1-ethyl-3-methylimidazole acetate ([EMIM][OAc]) and 1-ethyl-3-methylimidazole hexafluorophosphate ([EMIM][PF6]). The results show that the introduction of different ionic liquids affects the grain growth of MOFs material and photocatalytic activity. Among them, ILDAc/MIL-68(In)-NH2 samples showed the highest photocatalytic activity. 92% removal rate of doxycycline hydrochloride and kinetic degradation constant (0.
Homepage: https://www.selleckchem.com/products/blu-945.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team