Notes
Notes - notes.io |
Chagas disease, caused by the protozoan parasite
, is a major public health problem in the Americas, and existing drugs have severe limitations. In this context, a vaccine would be an attractive alternative for disease control. One of the difficulties in developing an effective vaccine lies in the high genetic diversity of
. In this study, we evaluated the level of sequence diversity of the leading vaccine candidate Tc24 in multiple parasite strains.
We quantified its level of polymorphism within and between
discrete typing units (DTUs) and how this potential polymorphism is structured by different selective pressures. We observed a low level of polymorphism of Tc24 protein, weakly associated with parasite DTUs, but not with the geographic origin of the strains. In particular, Tc24 was under strong purifying selection pressure and predicted CD8
T-cell epitopes were mostly conserved. Tc24 strong conservation may be associated with structural/functional constrains to preserve EF hand domains and their calcium-binding loops, and Tc24 is likely important for the parasite fitness.
Together, these results show that a vaccine based on Tc24 is likely to be effective against a wide diversity of parasite strains across the American continent, and further development of this vaccine candidate should be a high priority.
Together, these results show that a vaccine based on Tc24 is likely to be effective against a wide diversity of parasite strains across the American continent, and further development of this vaccine candidate should be a high priority.Many natural systems are subject to profound and persistent anthropogenic influence. Human-induced gene movement through afforestation and the selective transportation of genotypes might enhance the potential for intraspecific hybridization, which could lead to outbreeding depression. However, the evolutionary legacy of afforestation on the spatial genetic structure of forest tree species has barely been investigated. To do this properly, the effects of anthropogenic and natural processes must be examined simultaneously. A multidisciplinary approach, integrating phylogeography, population genetics, species distribution modeling, and niche divergence would permit evaluation of potential anthropogenic impacts, such as mass planting near-native material. Here, these approaches were applied to Pinus armandii, a Chinese endemic coniferous tree species, that has been mass planted across its native range. Population genetic analyses showed that natural populations of P. armandii comprised three lineages that diverged around the late Miocene, during a period of massive uplifts of the Hengduan Mountains, and intensification of Asian Summer Monsoon. Only limited gene flow was detected between lineages, indicating that each largely maintained is genetic integrity. Moreover, most or all planted populations were found to have been sourced within the same region, minimizing disruption of large-scale spatial genetic structure within P. armandii. This might be because each of the three lineages had a distinct climatic niche, according to ecological niche modeling and niche divergence tests. The current study provides empirical genetic and ecological evidence for the site-species matching principle in forestry and will be useful to manage restoration efforts by identifying suitable areas and climates for introducing and planting new forests. Our results also highlight the urgent need to evaluate the genetic impacts of large-scale afforestation in other native tree species.Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco-evolutionary feedbackombinations.The release of domestic organisms to the wild threatens biodiversity because the introduction of domestic genes through interbreeding can negatively impact wild conspecifics via outbreeding depression. In North America, farmed American mink (Neovison vison) frequently escape captivity, yet the impact of these events on functional genetic diversity of wild mink populations is unclear. We characterized domestic and wild mink in Ontario at 17 trinucleotide microsatellites located in functional genes thought to be associated with traits affected by domestication. We found low functional genetic diversity in both mink types, as only four of 17 genes were variable, yet allele frequencies varied widely between captive and wild populations. To determine whether allele frequencies of wild populations were affected by geographic location, we performed redundancy analysis and spatial analysis of principal components on three polymorphic loci (AR, ATN1 and IGF-1). We found evidence to suggest domestic release events are affecting the functional genetic diversity of wild mink, as sPCA showed clear distinctions between wild individuals near mink farms and those located in areas without mink farms. This is further substantiated through RDA, where spatial location was associated with genetic variation of AR, ATN1 and IGF1.Environmental stress can have a profound effect on inbreeding depression. Quantifying this effect is of particular importance in threatened populations, which are often simultaneously subject to both inbreeding and environmental stress. But while the prevalence of inbreeding-stress interactions is well known, the importance and broader applicability of such interactions in conservation are not clearly understood. We used seed beetles, Callosobruchus maculatus, as a model system to quantify how environmental stressors (here host quality and temperature stress) interact with inbreeding as measured by changes in the magnitude of inbreeding depression, δ, as well as the relative importance of inbreeding-stress interactions to overall fitness. We found that while both environmental stressors caused substantial inbreeding-stress interactions as measured by change in δ, the relative importance of these interactions to overall survival was modest. This suggests that assessing inbreeding-stress interactions within the framework of δ alone may give an inaccurate representation of the relevance of interactions to population persistence. NG25 datasheet Furthermore, we found that the effect of environmental stress on fitness, but not inbreeding depression, varied strongly among populations. These results suggest that the outcomes of inbreeding-stress interactions are not easily generalized, an important consideration in conservation settings.Forest trees are an excellent resource from which to understand population differentiation and heterogeneous genome variation patterns due to the majority of forest trees being distributed widely and able to adapt to different climates and environments. Populus davidiana is among the most geographically widespread and ecologically important tree species in China. Whole-genome resequencing data of 75 individual examples of P. davidiana throughout China were conducted, finding that all examples from different regions were clearly divided into either Northeast (N), Central (C), and South (S) populations. The ancestors of P. davidiana diverged into Northern group, comprising both N and C and Southern populations approximately 792,548 years ago. This time point of differentiation suggests that divergence of P. davidiana populations might have been triggered by the mid-Pleistocene transition. The three populations experienced considerable periods of bottleneck following divergence, with population expansion beginning around 5,000 years ago after the end of the last glacial maximum. We found N to be the center of origin of P. davidiana in China. The migration route of P. davidiana in China was from N to S. Although the majority of the regions of genomic differentiation between N and S populations can be explained by neutral processes, a number of tested outlier regions were also found to have been significantly influenced by natural selection. Our results highlight that linked selection and rates of recombination were important factors in genomic differentiation between the N and S populations. Finally, we identified a substantial number of functional genes related to climate change during population differentiation and adaptive evolution.Fragmentation by artificial barriers is an important threat to freshwater biodiversity. Mitigating the negative aftermaths of fragmentation is of crucial importance, and it is now essential for environmental managers to benefit from a precise estimate of the individual impact of weirs and dams on river connectivity. Although the indirect monitoring of fragmentation using molecular data constitutes a promising approach, it is plagued with several constraints preventing a standardized quantification of barrier effects. Indeed, observed levels of genetic differentiation GD depend on both the age of the obstacle and the effective size of the populations it separates, making comparisons of the actual barrier effect of different obstacles difficult. Here, we developed a standardized genetic index of fragmentation (FINDEX), allowing an absolute and independent assessment of the individual effects of obstacles on connectivity. The FINDEX is the standardized ratio between the observed GD between pairs of populations lrograms.In many ways, dogs are an ideal model for the study of genetic erosion and population recovery, problems of major concern in the field of conservation genetics. Genetic diversity in many dog breeds has been declining systematically since the beginning of the 1800s, when modern breeding practices came into fashion. As such, inbreeding in domestic dog breeds is substantial and widespread and has led to an increase in recessive deleterious mutations of high effect as well as general inbreeding depression. Pedigrees can in theory be used to guide breeding decisions, though are often incomplete and do not reflect the full history of inbreeding. Small microsatellite panels are also used in some cases to choose mating pairs to produce litters with low levels of inbreeding. However, the long-term impact of such practices has not been thoroughly evaluated. Here, we use forward simulation on a model of the dog genome to examine the impact of using limited marker panels to guide pairwise mating decisions on genome-wide population-level genetic diversity. Our results suggest that in unmanaged populations, where breeding decisions are made at the pairwise-rather than population-level, such panels can lead to accelerated loss of genetic diversity at genome regions unlinked to panel markers, compared to random mating. These results demonstrate the importance of genome-wide genetic panels for managing and conserving genetic diversity in dogs and other companion animals.
Read More: https://www.selleckchem.com/products/ng25.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team