Notes
![]() ![]() Notes - notes.io |
ge over setups designed for specific devices.
The RF coils for magnetic resonance image guided radiotherapy (MRIgRT) may be constructed using thin and/or low-density conductors, along with thinner enclosure materials. This work measures the surface dose increases for lightweight conductors and enclosure materials in a magnetic field parallel to a 6 MV photon beam.
Aluminum and copper foils (9-127 μm thick), as well as samples of polyimide (17 μm) and polyester (127 μm) films are positioned atop a polystyrene phantom. A parallel plate ion chamber embedded into the top of the phantom measures the surface dose in 6 MV photon beam. Measurements (% of dose at the depth of maximum dose) are performed with and without a parallel magnetic field (0.22T at magnet center).
In the presence of a magnetic field, the unobstructed surface dose is higher (31.9%D
versus 22.2%D
). The surface dose is found to increase linearly with thickness for thin (<25 μm) copper (0.339%D
μm
) and aluminum (0.116%D
μm
) foils. In the presence of a magnetic field the slpolyimide film increase surface dose by only a few %Dmax in excess of an unobstructed beam. Based on measurements in this study, in-beam, surface RF coils are feasible for MRIgRT systems.For many years, track-average linear energy transfer (LET), [Formula see text] has been used to quantify the radiation-induced phenomena in biological and physical systems. However, due to the need for including into the radiotherapy treatment planning system, parameters that are clinical and biologically relevant, a precise knowledge of the dose-average LET, [Formula see text] becomes essential. Besides, several dosimetric studies have revealed that [Formula see text] is fundamental to describe the dosimeter's response induced by photons. The most important data sets publicly available for [Formula see text] of electron generated by photons are those reported for measurements performed in methane-based tissue-equivalent gas. However, comparing to liquid water, the electron spectra generated by low photon energy might not be similar due to the photoelectric effect. Thus, this work aimed at investigating the [Formula see text] of electron spectra generated in liquid water and LiFMg,Ti by ten x-ray beams from 20 kV to 300 kV, 137Cs and 60Co gamma. The results suggest that [Formula see text] is more sensitive to the surrounding environment than [Formula see text] and consequently, it might be a more appropriate parameter to quantify the radiation effect and damage in matter induced by photons. Besides, good agreement (6% to 12% differences versus 10% to 15% uncertainties in the experiments) was observed between the data obtained in this work for liquid water and the experimental values published for methane-based tissue-equivalent gas at energies above 60 keV. Whereas at lowest energies, the minimum difference is around 18% which can be associated to the difference between the two media.Brain-Computer Interface (BCI) systems use brain activity as an input signal and enable communication without requiring bodily movement. This novel technology may help impaired patients and users with disabilities to communicate with their environment. Over the years, researchers investigated the performance of subjects in different BCI paradigms, stating that 15%-30% of BCI users are unable to reach proficiency in using a BCI system and therefore were labelled as BCI illiterates. Recent progress in the BCIs based on the visually evoked potentials (VEPs) necessitates re-considering of this term, as very often all subjects are able to use VEP-based BCI systems. This study examines correlations among BCI performance, personal preferences, and further demographic factors for three different modern visually evoked BCI paradigms (1) the conventional Steady-State Visual Evoked Potentials (SSVEPs) based on visual stimuli flickering at specific constant frequencies (fVEP), (2) Steady-State motion Visual Evoked Potentials (SSmVEP), and (3) code-modulated Visual Evoked Potentials (cVEP). Demographic parameters, as well as handedness, vision correction, BCI experience, etc., have no significant effect on the performance of VEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only 20 out of a total of 86 participants indicated a change in fatigue during the experiment. 83 subjects were able to successfully finish all spelling tasks with the fVEP speller, with a mean (SD) information transfer rate of 31.87 bit/min (9.83) and an accuracy of 95.28% (5.18), respectively. Compared to that, 80 subjects were able to successfully finish all spelling tasks using SSmVEP, with a mean information transfer rate of 26.44 bit/min (8.04) and an accuracy of 91.10% (6.01), respectively. Finally, all 86 subjects were able to successfully finish all spelling tasks with the cVEP speller, with a mean information transfer rate of 40.23 bit/min (7.63) and an accuracy of 97.83% (3.37).Therapeutic Low-intensity Pulsed Ultrasound (LIPUS) has been applied clinically for bone fracture healing and has been shown to stimulate extracellular matrix (ECM) metabolism in numerous soft tissues including intervertebral disc (IVD). In-vitro LIPUS testing systems have been developed and typically include polystyrene cell culture plates (CCP) placed directly on top of the ultrasound transducer in the acoustic near-field (NF). This configuration introduces several undesirable acoustic artifacts, making the establishment of dose-response relationships difficult, and is not relevant for targeting deep tissues such as the IVD, which may require far-field (FF) exposure from low frequency sources. The objective of this study was to design and validate an in-vitro LIPUS system for stimulating ECM synthesis in IVD-cells while mimicking attributes of a deep delivery system by delivering uniform, FF acoustic energy while minimizing reflections and standing waves within target wells, and unwanted temperature elevatithe IVD.
Rigid image registration (RIR) accuracy is crucial for image guided radiotherapy (IGRT). However, existing clinical image registration assessment methods cannot separate and quantify RIR error sources. Herein, we develop an extension of the 'full circle method' for RIR consistency. Paired registration circuits are used to isolate sources of RIR error caused by reference dataset substitution, from those inherent to the underlying RIR. This approach was demonstrated in the context of MRI-only IGRT, assessing substitution of MRI-derived synthetic-CT (sCT) for conventional CT, in a cohort of rectal cancer patients.
Planning CT, MRI-derived sCT, and two CBCTs from seven rectal cancer patients were retrospectively registered with global and soft tissue clipbox based RIR. Paired registration circuits were constructed using two moving (cone beam CT) images and two reference images (CT and sCT), per patient. Differences between inconsistencies in registration circuits containing CT and sCT were used to determine cng RIR accuracy without ground truth information was developed and demonstrated for MRI-only IGRT in rectal cancer. TL12-186 order This highlighted a reduction in clipbox based RIR consistency when sCT was substituted for conventional CT. The developed method enabled separation of degraded registration accuracy, from other error sources within the overall registration inconsistency. This novel methodology is applicable to any RIR scenario and enables analysis of the change in RIR performance on modification of image data or process.This study is an evaluation of the use of a N-isopropylacrylamide (NIPAM)-based x-ray CT polymer gel dosimetry (PGD) system in the measurement of deformed dose. This work also compares dose that is measured by the gel dosimetry system to dose calculated by a novel deformable dose accumulation algorithm, defDOSXYZnrc, that uses direct voxel tracking. Deformable gels were first irradiated using a single 3.5 × 5 cm2 open field and the static dose was compared to defDOSXYZnrc as a control measurement. Gel measurement was found to be in excellent agreement with defDOSXYZnrc in the static case with gamma passing rates of 94.5% using a 3%/3 mm criterion and 93.3% using a 3%/2 mm criterion. Following the static measurements, a deformable gel was irradiated with the same single field under an external compression of 25 mm and then released from this compression for dosimetric read out. The measured deformed dose was then compared to deformed dose calculated by defDOSXYZnrc based on deformation vectors produced by the Velocity AI deformable image registration (DIR) algorithm. In the deformed dose distribution there were differences in the measured and calculated field position of up to 0.8 mm and differences in the measured in calculated field size of up to 11.9 mm. Gamma pass rates were 60.0% using a 3%/3 mm criterion and 56.8% using a 3%/2 mm criterion for the deforming measurements representing a decrease in agreement compared to the control measurements. Further analysis showed that passing rates increased to 86.5% using a 3%/3 mm criterion and 70.5% using a 3%/2 mm criterion in voxels within 5 mm of fiducial markers used to guide the deformable image registration. This work represents the first measurement of deformed dose using x-ray CT polymer gel dosimetry. Overall these results highlight some of the challenges in the calculation and measurement of deforming dose and provide insight into possible strategies for improvement.Motor imagery (MI) constitutes a recurrent strategy for signals generation in brain-computer interfaces (BCIs) - systems that aim to control external devices by directly associating brain responses to distinct commands. Although great improvement has been achieved in MI-BCIs performance over recent years, they still suffer from inter- and intra-subject variability issues. As an attempt to cope with this, some studies have suggested that MI training should aid users to appropriately modulate their response for BCI usage generally, this training is performed based on the sensorimotor rhythms' modulation over the primary sensorimotor cortex (PMC), with the signal being feedbacked to the user. Nonetheless, recent studies have revisited the actual involvement of the PMC into MI, and little to no attention has been devoted to understanding the participation of other cortical areas into training protocols. Therefore, in this work, our aim was to analyze the response induced by hands MI of 10 healthy subjects in the form of event-related desynchronizations (ERDs) and to assess whether features from beyond the PMC might be useful for hands MI classification. We investigated how this response occurs for distinct frequency intervals between 7-30 Hz, and ex0plored changes in their evocation pattern across 12 MI training sessions without feedback. Overall, we found that ERD patterns occur differently for the frequencies encompassed by the μ and β bands, with its evocation being favored for the first band. Over time, the no-feedback approach was inefficient to aid in enhancing ERD evocation (EO). Moreover, to some extent, EO tends to decrease over blocks within a given run, and runs within an MI session, but remains stable within an MI block. We also found that the C3/C4 pair is not necessarily optimal for data classification, and both spectral and spatial subjects' specificities should be considered when designing training protocols.
Website: https://www.selleckchem.com/products/tl12-186.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team