NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Sirolimus Inhibits Phosphorylation involving Cofilin and also Decreases Interstitial Septal Breadth inside Erratic Lymphangioleiomyomatosis.
Third, we present some new results when it is used to learn the conditional mean function by developing its error bounds and exponential convergence rates under conditional ( 1 + ε )-moment assumptions. The saturation effect on the established convergence rates, which was observed under ( 1 + ε )-moment assumptions, still occurs, indicating the inherent bias of the regression estimator. These novel insights deepen our understanding of correntropy-based regression, help cement the theoretic correntropy framework, and enable us to investigate learning schemes induced by general bounded nonconvex loss functions.This letter proposes a new idea to improve learning efficiency in reinforcement learning (RL) with the actor-critic method used as a muscle controller for posture stabilization of the human arm. Actor-critic RL (ACRL) is used for simulations to realize posture controls in humans or robots using muscle tension control. However, it requires very high computational costs to acquire a better muscle control policy for desirable postures. selleck compound For efficient ACRL, we focused on embodiment that is supposed to potentially achieve efficient controls in research fields of artificial intelligence or robotics. According to the neurophysiology of motion control obtained from experimental studies using animals or humans, the pedunculopontine tegmental nucleus (PPTn) induces muscle tone suppression, and the midbrain locomotor region (MLR) induces muscle tone promotion. PPTn and MLR modulate the activation levels of mutually antagonizing muscles such as flexors and extensors in a process through which control signals are translated from the substantia nigra reticulata to the brain stem. Therefore, we hypothesized that the PPTn and MLR could control muscle tone, that is, the maximum values of activation levels of mutually antagonizing muscles using different sigmoidal functions for each muscle; then we introduced antagonism function models (AFMs) of PPTn and MLR for individual muscles, incorporating the hypothesis into the process to determine the activation level of each muscle based on the output of the actor in ACRL. ACRL with AFMs representing the embodiment of muscle tone successfully achieved posture stabilization in five joint motions of the right arm of a human adult male under gravity in predetermined target angles at an earlier period of learning than the learning methods without AFMs. The results obtained from this study suggest that the introduction of embodiment of muscle tone can enhance learning efficiency in posture stabilization disorders of humans or humanoid robots.Testing under what conditions a product satisfies the desired properties is a fundamental problem in manufacturing industry. If the condition and the property are respectively regarded as the input and the output of a black-box function, this task can be interpreted as the problem called level set estimation (LSE) the problem of identifying input regions such that the function value is above (or below) a threshold. Although various methods for LSE problems have been developed, many issues remain to be solved for their practical use. As one of such issues, we consider the case where the input conditions cannot be controlled precisely-LSE problems under input uncertainty. We introduce a basic framework for handling input uncertainty in LSE problems and then propose efficient methods with proper theoretical guarantees. The proposed methods and theories can be generally applied to a variety of challenges related to LSE under input uncertainty such as cost-dependent input uncertainties and unknown input uncertainties. We apply the proposed methods to artificial and real data to demonstrate their applicability and effectiveness.The ability to encode and manipulate data structures with distributed neural representations could qualitatively enhance the capabilities of traditional neural networks by supporting rule-based symbolic reasoning, a central property of cognition. Here we show how this may be accomplished within the framework of Vector Symbolic Architectures (VSAs) (Plate, 1991; Gayler, 1998; Kanerva, 1996), whereby data structures are encoded by combining high-dimensional vectors with operations that together form an algebra on the space of distributed representations. In particular, we propose an efficient solution to a hard combinatorial search problem that arises when decoding elements of a VSA data structure the factorization of products of multiple codevectors. Our proposed algorithm, called a resonator network, is a new type of recurrent neural network that interleaves VSA multiplication operations and pattern completion. We show in two examples-parsing of a tree-like data structure and parsing of a visual scene-how the factorization problem arises and how the resonator network can solve it. More broadly, resonator networks open the possibility of applying VSAs to myriad artificial intelligence problems in real-world domains. The companion article in this issue (Kent, Frady, Sommer, & Olshausen, 2020) presents a rigorous analysis and evaluation of the performance of resonator networks, showing it outperforms alternative approaches.Pruning is an effective way to slim and speed up convolutional neural networks. Generally previous work directly pruned neural networks in the original feature space without considering the correlation of neurons. We argue that such a way of pruning still keeps some redundancy in the pruned networks. In this letter, we proposed to prune in the intermediate space in which the correlation of neurons is eliminated. To achieve this goal, the input and output of a convolutional layer are first mapped to an intermediate space by orthogonal transformation. Then neurons are evaluated and pruned in the intermediate space. Extensive experiments have shown that our redundancy-aware pruning method surpasses state-of-the-art pruning methods on both efficiency and accuracy. Notably, using our redundancy-aware pruning method, ResNet models with three times the speed-up could achieve competitive performance with fewer floating point operations per second even compared to DenseNet.We develop theoretical foundations of resonator networks, a new type of recurrent neural network introduced in Frady, Kent, Olshausen, and Sommer (2020), a companion article in this issue, to solve a high-dimensional vector factorization problem arising in Vector Symbolic Architectures. Given a composite vector formed by the Hadamard product between a discrete set of high-dimensional vectors, a resonator network can efficiently decompose the composite into these factors. We compare the performance of resonator networks against optimization-based methods, including Alternating Least Squares and several gradient-based algorithms, showing that resonator networks are superior in several important ways. This advantage is achieved by leveraging a combination of nonlinear dynamics and searching in superposition, by which estimates of the correct solution are formed from a weighted superposition of all possible solutions. While the alternative methods also search in superposition, the dynamics of resonator networks allow them to strike a more effective balance between exploring the solution space and exploiting local information to drive the network toward probable solutions. Resonator networks are not guaranteed to converge, but within a particular regime they almost always do. In exchange for relaxing the guarantee of global convergence, resonator networks are dramatically more effective at finding factorizations than all alternative approaches considered.Working memory is essential it serves to guide intelligent behavior of humans and nonhuman primates when task-relevant stimuli are no longer present to the senses. Moreover, complex tasks often require that multiple working memory representations can be flexibly and independently maintained, prioritized, and updated according to changing task demands. Thus far, neural network models of working memory have been unable to offer an integrative account of how such control mechanisms can be acquired in a biologically plausible manner. Here, we present WorkMATe, a neural network architecture that models cognitive control over working memory content and learns the appropriate control operations needed to solve complex working memory tasks. Key components of the model include a gated memory circuit that is controlled by internal actions, encoding sensory information through untrained connections, and a neural circuit that matches sensory inputs to memory content. The network is trained by means of a biologically plausible reinforcement learning rule that relies on attentional feedback and reward prediction errors to guide synaptic updates. We demonstrate that the model successfully acquires policies to solve classical working memory tasks, such as delayed recognition and delayed pro-saccade/anti-saccade tasks. In addition, the model solves much more complex tasks, including the hierarchical 12-AX task or the ABAB ordered recognition task, both of which demand an agent to independently store and updated multiple items separately in memory. Furthermore, the control strategies that the model acquires for these tasks subsequently generalize to new task contexts with novel stimuli, thus bringing symbolic production rule qualities to a neural network architecture. As such, WorkMATe provides a new solution for the neural implementation of flexible memory control.Nonlinear interactions in the dendritic tree play a key role in neural computation. Nevertheless, modeling frameworks aimed at the construction of large-scale, functional spiking neural networks, such as the Neural Engineering Framework, tend to assume a linear superposition of postsynaptic currents. In this letter, we present a series of extensions to the Neural Engineering Framework that facilitate the construction of networks incorporating Dale's principle and nonlinear conductance-based synapses. We apply these extensions to a two-compartment LIF neuron that can be seen as a simple model of passive dendritic computation. We show that it is possible to incorporate neuron models with input-dependent nonlinearities into the Neural Engineering Framework without compromising high-level function and that nonlinear postsynaptic currents can be systematically exploited to compute a wide variety of multivariate, band-limited functions, including the Euclidean norm, controlled shunting, and nonnegative multiplication. By avoiding an additional source of spike noise, the function approximation accuracy of a single layer of two-compartment LIF neurons is on a par with or even surpasses that of two-layer spiking neural networks up to a certain target function bandwidth.Recent advances in weakly supervised classification allow us to train a classifier from only positive and unlabeled (PU) data. However, existing PU classification methods typically require an accurate estimate of the class-prior probability, a critical bottleneck particularly for high-dimensional data. This problem has been commonly addressed by applying principal component analysis in advance, but such unsupervised dimension reduction can collapse the underlying class structure. In this letter, we propose a novel representation learning method from PU data based on the information-maximization principle. Our method does not require class-prior estimation and thus can be used as a preprocessing method for PU classification. Through experiments, we demonstrate that our method, combined with deep neural networks, highly improves the accuracy of PU class-prior estimation, leading to state-of-the-art PU classification performance.
Website: https://www.selleckchem.com/products/Daidzein.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.