Notes
![]() ![]() Notes - notes.io |
The low-cost and environmentally benign elemental red phosphorus (RP) is a new class of photocatalysts with tunable bandgaps (ca. 1.5-2.4 eV) and has a strong visible-light response. It has been considered as a promising metal-free photocatalyst for solving the energy crisis and environmental problems. Unfortunately, due to the low-charge carrier mobility, and serve charge trapping effects, its photocatalytic activity is still restricted in comparison with the traditional compound photocatalysts. Considerable efforts, such as morphology modification, cocatalysts addition, heterostructure construction, charge trapping mitigation, have been conducted to improve the photocatalytic activity of the RP photocatalysts. In this review, the physical and chemical properties and the synthetic strategies of the RP photocatalysts were summarized along with the application in environmental remediation accompanied by the photocatalytic reaction mechanism. Finally, an overview and outlook on the problems and future avenues in designing and constructing advanced RP photocatalysts were also proposed.This study deals with the effect of aeration control strategies on the nitrogen removal efficiency and nitrous oxide (N2O) emissions in a partial nitritation-anammox reactor with granular sludge. More specifically, dissolved oxygen (DO) control, constant airflow and effluent ammonium (NH4+) control strategies were compared through a simulation study. Particular attention was paid to the effect of flocs, which are deliberately or unavoidable present besides granules in this type of reactor. When applying DO control, DO setpoints had to be adjusted to the amount of flocs present in the reactor to maintain high nitrogen removal and reduce N2O emissions, which is difficult to realize in practice because of variable floc fractions. Constant airflow rate control could maintain a good nitrogen removal efficiency independent of the floc fraction in the reactor, but failed in N2O mitigation. Controlling aeration based on the effluent ammonium concentration results in both high nitrogen removal and relatively low N2O emissions, also in the presence of flocs. click here Fluctuations in floc fractions caused significant upsets in nitrogen removal and N2O emissions under DO control but had less effect at constant airflow and effluent ammonium control. Still, rapid and sharp drops in flocs led to a peak in N2O emissions at constant airflow and effluent ammonium control. Overall, effluent ammonium control reached the highest average nitrogen removal and lowest N2O emissions and consumed the lowest aeration energy under fluctuating floc concentrations.In areas that experience frequent fluctuations in groundwater levels, changes in soil void space caused by fluctuations in groundwater levels directly affect the efficacy of soil vapor extraction (SVE). Most studies of SVE technology of oil-contaminated soil remediation do not consider fluctuations in groundwater levels. Here, we constructed an experimental device to study the removal of benzene by SVE under fluctuating groundwater levels. Key parameters affecting the remediation effect of SVE, such as the extraction flow, extraction time, extraction method, initial soil moisture content and initial pollutant content, were studied to characterize their effects on the efficacy of benzene removal by SVE under stable and fluctuating groundwater levels. The removal rate of benzene by SVE was approximately 10% higher under fluctuating water levels than under stable water levels. Extraction flow can directly change the removal rate under fluctuating groundwater levels. Under fluctuating groundwater levels, the removal effect of SVE on benzene in different soils of the "stabilization zone - fluctuation zone - saturation zone" also significantly differed; specifically, the removal effect of SVE in the fluctuation zone and stabilization zone was superior to that in the saturation zone. Given the fluctuation in groundwater levels at the study site, the remediation.The benzenes have attracted worldwide attention due to their high biological toxicity in the environment. In this study, using species sensitivity distribution method to derive the aquatic life criteria of 7 benzenes (carbazole, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, phenol, 2,4-Dichlorophenol and nitrobenzene), then risk quotient method (RQ), potentially affected fraction (PAF) method and joint probability curve (JPC) method were applied for multilevel ecological risk assessment for 7 benzenes in Tai Lake Basin. In addition, the human health ambient water quality criteria (AWQC) of 7 benzenes were derived according to USEPA guidelines, and the probability distributions of human health AWQC for 7 benzenes in China were simulated by Monte Carlo simulation combined with crystal ball software. Finally, the health risks of 7 benzenes in Tai Lake were assessed by RQ method assisted by Monte Carlo simulation. The results showed that nitrobenzene had the maximum aquatic life criteria value, followed by phenol, chlorobenzenes, 2,4-Dichlorophenol and carbazole. All recommended human health AWQC values of 7 benzenes were found at a position of 27th-55th percentiles in the output criteria distributions, indicating that recommended national human health AWQC values could provide effective protection for most of the population in China. Furthermore, the consumption of aquatic products was found to be the most influential parameter of human health AWQC for benzenes with higher Kow values. The risk assessments showed that noncarcinogenic 2,4-Dichlorophenol had potential ecological risk, carcinogenic carbazole and 1,2,4-Trichlorobenzene had significant human health risk in Tai Lake.Pharmaceuticals have been recognized for saving billions of lives, but they also appear as a novel group of environmental pollutants. The presence of pharmaceutically active residues in seawater, surface water, wastewater treatment plants, sludges, and soils has been widely reported. Their persistence in the environment for extended durations exerts various adverse consequences, such as gene toxicity, hormonal interference, antibiotic resistance, sex organs imposition, and many others. Various methodologies have been envisioned for their removal from the aqueous media. Different processes have been restricted due to high cost, inefficient removal, generation of toxic materials, and high capital requirement. The employment of nanostructured materials to mitigate pharmaceutical contaminants has been increasing during the last decades. The adsorptive nanomaterials have a high surface area, low cost, eco-friendliness, and high affinity for inorganic and organic molecules. In this review, we have documented the rising concerns of environmental pharmaceutical contamination and their remediation by applications of nanomaterials.
Here's my website: https://www.selleckchem.com/products/itacitinib-incb39110.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team