NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Electronic Equipment for your Self-Assessment of Visual Skill: A deliberate Evaluate.
Multiple double-pole bright-bright and bright-dark soliton solutions for the multicomponent nonlinear Schrödinger (MCNLS) system comprising three types of nonlinearities, namely, focusing, defocusing, and mixed (focusing-defocusing) nonlinearities, arising in different physical settings are constructed. An interesting type of energy-exchanging phenomenon during collision of these double-pole solitons is unraveled. To explore the objectives, we consider the general solutions of a set of generalized MCNLS equations and by taking the long-wavelength limit with proper parameter choices of single-pole bright-bright and bright-dark soliton pairs, the multiple double-pole bright-bright and bright-dark soliton solutions are constructed in terms of determinants. The regular double-pole bright-bright solitons exist in the focusing and focusing-defocusing MCNLS equations and undergo a particular type of energy-sharing collision for M≥2 in addition to the usual elastic collisions. A striking feature observed in the procemulate interest in such special multipole localized structures and are expected to have ramifications in nonlinear optics.Development in multicellular organisms is marked by a high degree of spatial organization of the cells attaining distinct fates in the embryo. Recent experiments showing that suppression of intercellular interactions can alter the spatial patterns arising during development suggest that cell fates cannot be determined by the exclusive regulation of differential gene expression by morphogen gradients (the conventional view encapsulated in the French flag model). Using a mathematical model that describes the receptor-ligand interaction between cells in close physical proximity, we show that such intercellular signaling can regulate the process of selective gene expression within each cell, allowing information from the cellular neighborhood to influence the process by which the thresholds of morphogen concentration that dictate cell fates adaptively emerge. This results in local modulations of the positional cues provided by the global field set up by the morphogen, allowing interaction-mediated self-organized pattern formation to complement boundary-organized mechanisms in the context of development.We simulate the two-dimensional XY model in the flow representation by a worm-type algorithm, up to linear system size L=4096, and study the geometric properties of the flow configurations. As the coupling strength K increases, we observe that the system undergoes a percolation transition K_perc from a disordered phase consisting of small clusters into an ordered phase containing a giant percolating cluster. Namely, in the low-temperature phase, there exhibits a long-ranged order regarding the flow connectivity, in contrast to the quasi-long-range order associated with spin properties. Near K_perc, the scaling behavior of geometric observables is well described by the standard finite-size scaling ansatz for a second-order phase transition. The estimated percolation threshold K_perc=1.1053(4) is close to but obviously smaller than the Berezinskii-Kosterlitz-Thouless (BKT) transition point K_BKT=1.1193(10), which is determined from the magnetic susceptibility and the superfluid density. Selleck ALK inhibitor Various interesting questions arise from these unconventional observations, and their solutions would shed light on a variety of classical and quantum systems of BKT phase transitions.Newtonian turbulence is characterized by interscale transport of energy from the forcing scales to the dissipation scales. In elastoinertial turbulence, this interscale energy flux is weakened. Here, we explain this phenomenon by numerically showing that elastoinertial energy is predominantly dissipated through polymer chain relaxation. As opposed to Newtonian dissipation, chain relaxation is neither restricted to small nor to large scales but instead it is effective on all the scales. Chain relaxation does not therefore require interscale transport of elastoinertial energy from the forcing scales to the dissipation scales.Various feedback mechanisms regulate the expression of different genes to ensure the required protein levels inside a cell. In this paper, we develop a kinetic model for one such mechanism that autoregulates RF2 protein synthesis in E. coli through programmed frameshifting. The model finds that the programmed frameshifting autoregulates RF2 protein synthesis by two independent mechanisms. First, it increases the rate of RF2 synthesis from each mRNA transcript at low RF2 concentration. Second, programmed frameshifting can dramatically increase the lifetime of RF2 transcripts when RF2 protein levels are lower than a threshold. This sharp increase in mRNA lifetime is caused by a first-order phase transition from a low to a high ribosome density on an RF2 transcript. The high ribosome density prevents the transcript's degradation by shielding it from nucleases, which increases its average lifetime and hence RF2 protein levels. Our study identifies this quality control mechanism that regulates the cellular protein levels by breaking the hierarchy of processes involved in gene expression.We consider closed quantum systems which are driven such that only negligible heating occurs. If driving only affects small parts of the system, it may nonetheless be strong. Our analysis aims at clarifying under which conditions the Jarzynski relation (JR) holds in such setups, if the initial states are microcanonical or even energy eigenstates. We find that the validity of the JR for the microcanonical initial state hinges on an exponential density of states and on stiffness. The latter indicates an independence of the probability density functions (PDFs) of work of the energy of the respective microcanonical initial state. The validity of the JR for initial energy eigenstates is found to additionally require smoothness. The latter indicates an independence of the work PDFs of the specific energy eigenstates within a microcanonical energy shell. As the validity of the JR for pure initial energy eigenstates has no analog in classical systems, we consider it a genuine quantum phenomenon.We study the diffusive transport of Markovian random walks on arbitrary networks with stochastic resetting to multiple nodes. We deduce analytical expressions for the stationary occupation probability and for the mean and global first passage times. This general approach allows us to characterize the effect of resetting on the capacity of random walk strategies to reach a particular target or to explore the network. Our formalism holds for ergodic random walks and can be implemented from the spectral properties of the random walk without resetting, providing a tool to analyze the efficiency of search strategies with resetting to multiple nodes. We apply the methods developed here to the dynamics with two reset nodes and derive analytical results for normal random walks and Lévy flights on rings. We also explore the effect of resetting to multiple nodes on a comb graph, Lévy flights that visit specific locations in a continuous space, and the Google random walk strategy on regular networks.A discrete and periodic complex Ginzburg-Landau equation, coupled to a mean equation, is systematically derived from a driven and dissipative lattice oscillator model, close to the onset of a supercritical Andronov-Hopf bifurcation. The oscillator model is inspired by recent experiments exploring active vibrations of quasi-one-dimensional lattices of self-propelled millimetric droplets bouncing on a vertically vibrating fluid bath. Our systematic derivation provides a direct link between the constitutive properties of the lattice system and the coefficients of the resultant amplitude equations, paving the way to compare the emergent nonlinear dynamics-namely, the onset and formation of discrete dark solitons, breathers, and traveling waves-against experiments. The framework presented herein is expected to be applicable to a wider class of oscillators characterized by the presence of a dynamic coupling potential between particles. More broadly, our results point to deeper connections between nonlinear oscillators and the physics of active and driven matter.We propose a stochastic order parameter model for describing phase coexistence in steady heat conduction near equilibrium. By analyzing the stochastic dynamics with a nonequilibrium adiabatic boundary condition, where total energy is conserved over time, we derive a variational principle that determines thermodynamic properties in nonequilibrium steady states. The resulting variational principle indicates that the temperature of the interface between the ordered region and the disordered region becomes greater (less) than the equilibrium transition temperature in the linear response regime when the thermal conductivity in the ordered region is less (greater) than that in the disordered region. This means that a superheated ordered (supercooled disordered) state appears near the interface, which was predicted by an extended framework of thermodynamics proposed in Nakagawa and Sasa [Liquid-Gas Transitions in Steady Heat Conduction, Phys. Rev. Lett. 119, 260602 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.260602.].Microtubules are an essential physical building block of cellular systems. They are organized using specific crosslinkers, motors, and influencers of nucleation and growth. With the addition of antiparallel crosslinkers, microtubule self-organization patterns go through a transition from fanlike structures to homogeneous tactoid condensates in vitro. Tactoids are reminiscent of biological mitotic spindles, the cell division machinery. To create these organizations, we previously used polymer crowding agents. Here we study how altering the properties of the crowders, such as type, size, and molecular weight, affects microtubule organization. Comparing simulations with experiments, we observe a scaling law associated with the fanlike patterns in the absence of crosslinkers. Tactoids formed in the presence of crosslinkers show variable length, depending on the crowders. We correlate the subtle differences to filament contour length changes, affected by nucleation and growth rate changes induced by the polymers in solution. Using quantitative image analysis, we deduce that the tactoids differ from traditional liquid crystal organization, as they are limited in width irrespective of crowders and surfaces, and behave as solidlike condensates.Highly symmetric networks can exhibit partly symmetry-broken states, including clusters and chimera states, i.e., states of coexisting synchronized and unsynchronized elements. We address the S_4 permutation symmetry of four globally coupled Stuart-Landau oscillators and uncover an interconnected web of solutions with different symmetries. Among these are chaotic 2-1-1 minimal chimeras that arise from 2-1-1 periodic solutions in a period-doubling cascade, as well as fully asymmetric chaotic states arising similarly from periodic 1-1-1-1 solutions. A backbone of equivariant pitchfork bifurcations mediate between the two cascades, culminating in equivariant pitchforks of chaotic attractors.Soft solids such as silicone gels, with bulk shear modulus ranging from ∼10 to 1000kPa, exhibit strongly strain-dependent surface stresses. Moreover, unlike conventional stiffer materials, the effects of surface stress in these materials manifest at length scales of tens of micrometers rather than nanometers. However, the calibration of constitutive parameters for surface hyperelasticity has proved to be challenging. Using a reasonably general surface constitutive model, we explore the possibility of obtaining its parameters from force-twist, torque-twist, and force-extension (force-compression) responses of a soft cylinder held between two inert, rigid plates. The motivation behind using these responses is derived from the fact that the roles of the surface constitutive parameters, under suitably ideal conditions, are neatly separated from each other and the three responses easily yield values of the three parameters. Moreover, through large deformation finite-element simulations with coupled bulk and surface hyperelasticity, we delineate the extent to which deviation from the ideal conditions may be tolerated.
My Website: https://www.selleckchem.com/ALK.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.