Notes
Notes - notes.io |
Part-rearranged displays, demonstrating the effect of familiarity on figure assignment. The results of the current study showed that HD-tDCS to right LO significantly influenced this typical behavioral pattern. Specifically, stimulation (vs. sham) increased reports of the critical region as figure for Part-rearranged stimuli, bringing perception of these displays up to the level of the Familiar stimuli. We interpret this finding as evidence that stimulation of right LO increased participants' reliance on the familiarity of the parts in their figure-ground judgements-a finding consistent with and extending previous research showing that LO is indeed sensitive to object parts. This is the first study showing that HD-tDCS to LO can influence the effects of familiarity on figure-ground perception.Parallel cohorts of Hebrew speakers learning English in the U.S., and American-English speakers learning Hebrew in Israel were tracked over the course of two years of immersion in their L2. We utilised a functional MRI semantic judgement task with print and speech tokens, as well as a battery of linguistic and cognitive behavioural measures prior to and after immersion, to track changes in both L1 and L2 processing. fMRI activation for print tokens produced a similar network of activation in both English and Hebrew, irrespective of L1 or L2 status. Significant convergence of print and speech processing was also observed in both languages across a network of left-hemisphere regions joint for both L1 and L2. Despite significant increases in behavioural measures of L2 proficiency, only a few signs of longitudinal change in L2 brain activation were found. In contrast, L1 showed widespread differences in processing across time, suggesting that the neurobiological footprint of reading is dynamic and plastic even in adults, with L2 immersion impacting L1 processing. Print/speech convergence showed little longitudinal change, suggesting that it is a stable marker of the differences in L1 and L2 processing across L2 proficiency.The present study uses event-related potentials to investigate how crosslinguistic (dis)similarities modulate anticipatory processing in the second language (L2). Participants read predictive stories in English that made a genitive construction consisting of a third-person singular possessive pronoun and a kinship noun (e.g., his mother) likely in an upcoming continuation. The possessive pronoun's form depended on the antecedent's natural gender, which had been previously established in the stories. The continuation included either the expected genitive construction or an unexpected one with a possessive pronoun of the opposite gender. We manipulated crosslinguistic (dis)similarity by comparing advanced English learners with either Swedish or Spanish as their L1. While Swedish has equivalent possessive pronouns that mark the antecedent's natural gender (i.e., hans/hennes "his/her"), Spanish does not. In fact, Spanish possessive pronouns mark the syntactic features (number, gender) of the possessed noun (e.g., nosotros queremos a nuestra madre "we-MASC love our-FEM mother-FEM). Twenty-four native speakers of English elicited an N400 effect for prenominal possessives that were unexpected based on the possessor noun's natural gender, consistent with the possibility that they activated the pronoun's form or its semantic features (natural gender). Thirty-two Swedish-speaking learners yielded a qualitatively and quantitatively native-like N400 for unexpected prenominal possessives. In contrast, twenty-five Spanish-speaking learners showed a P600 effect for unexpected possessives, consistent with the possibility that they experienced difficulty integrating a pronoun that mismatched the expected gender. Results suggest that differences with respect to the features encoded in the activated representation result in different predictive mechanisms among adult L2 learners.Deficits in executive control have long been regarded as one of the hallmark cognitive characteristics in people with schizophrenia (SZ), and current neurocognitive models of SZ generally regard the dysfunctional anterior cingulate cortex (ACC) as the possible neural mechanism. This however, contrasts with recent studies showing that conflict processing, a key component of executive functions that relies on ACC, remains relatively intact in SZ. The current study aimed to investigate this issue through two well-known electrophysiological signatures of conflict processing that have been suggested to originate from ACC, i.e., the N2 component of event-related potentials (ERPs) and frontal midline theta (FMθ) oscillations. We recorded 64-channel scalp electroencephalography from 29 SZ (17 women; mean age 30.4 years) and 31 healthy control subjects (HC; 17 women; mean age 29.1 years) performing a modified flanker task. Behavioral data revealed no significant differences in flanker conflict effects (lower accuracy and longer reaction times in incongruent trials than in congruent trials) between HC and SZ. Trial-averaged ERP and spectral analysis suggested that both N2 and FMθ were significantly impaired in SZ relative to HC. Furthermore, by sorting incongruent trials according to their reaction times within individual subjects, we found that the trial-by-trial modulation of N2 (larger amplitude and longer latency in slower trials) which was observed and localized in ACC for HC was totally absent for SZ. I-BRD9 molecular weight By contrast, the trial-by-trial modulation of FMθ (larger power in slower trials) was observed and localized in ACC for both groups, despite a smaller magnitude in SZ, which suggested that FMθ, not N2, might serve as the neural substrate of conflict processing in SZ. Taken together, our results enrich the current neurocognitive models of SZ by revealing dissociable neural responses between N2 and FMθ during conflict processing in SZ.Olfactory impairment is a common clinical motif across neurodevelopmental disorders, suggesting olfactory circuits are particularly vulnerable to disease processes and can provide insight into underlying disease mechanisms. The mouse olfactory bulb is an ideal model system to study mechanisms of neurodevelopmental disease due to its anatomical accessibility, behavioral relevance, ease of measuring circuit input and output, and the feature of adult neurogenesis. Despite the clinical relevance and experimental benefits, olfactory testing across animal models of neurodevelopmental disease has been inconsistent and non-standardized. Here we performed a systematic literature review of olfactory function testing in mouse models of neurodevelopmental disorders, and identified intriguing inconsistencies that include evidence for both increased and decreased acuity in odor detection in various mouse models of Autism Spectrum Disorder (ASD). Based on our identified gaps in the literature, we recommend direct comparison of different mouse models of ASD using standardized tests for odor detection and discrimination.
My Website: https://www.selleckchem.com/products/i-brd9-gsk602.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team