Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
is hypothesis.Reliable age estimation is an essential tool to assess the status of wildlife populations and inform successful management. Aging methods, however, are often limited by too few data, skewed demographic representation, and by single or uncertain morphometric relationships. In this study, we synthesize age estimates in southern sea otters Enhydra lutris nereis from 761 individuals across 34 years of study, using multiple noninvasive techniques and capturing all life stages from 0 to 17 years of age. From wild, stranded, and captive individuals, we describe tooth eruptions, tooth wear, body length, nose scarring, and pelage coloration across ontogeny and fit sex-based growth functions to the data. Dental eruption schedules provided reliable and identifiable metrics spanning 0.3-9 months. Tooth wear was the most reliable predictor of age of individuals aged 1-15 years, which when combined with total length, explained >93% of observed age. Beyond age estimation, dental attrition also indicated the maximum lifespan of adult teeth is 13‒17 years, corresponding with previous estimates of life expectancy. selleck chemicals Von Bertalanffy growth function model simulations of length at age gave consistent estimates of asymptotic lengths (male Loo = 126.0‒126.8 cm, female Loo = 115.3‒115.7 cm), biologically realistic gestation periods (t0 = 115 days, SD = 10.2), and somatic growth (male k = 1.8, SD = 0.1; female k = 2.1, SD = 0.1). Though exploratory, we describe how field radiographic imaging of epiphyseal plate development or fusions may improve aging of immature sea otters. Together, our results highlight the value of integrating information from multiple and diverse datasets to help resolve conservation problems.Frugivory networks exhibit a set of properties characterized by a number of network theory-derived metrics. Their structures often form deterministic patterns that can be explained by the functional roles of interacting species. Although we know lots about how these networks are organized when ecosystems are in a complete, functional condition, we know much less about how incomplete and simplified networks (such as those found in urban and periurban parks) are organized, which features are maintained, which ones are not, and why. In this paper, we examine the properties of a network between frugivorous birds and plants in a small Neotropical periurban park. We found a frugivory network composed of 29 species of birds and 23 of plants. The main roles in this network are played by four species of generalist birds (three resident, one migratory Myiozetetes similis, Turdus grayi, Chlorospingus flavopectus, and Dumetella carolinensis) and three species of plants (one exotic, two early successional Phoenix canariensis, Phoradendron sp., and Witheringia stramoniifolia). When compared to reference data from other locations in the Neotropics, species richness is low, one important network-level metric is maintained (modularity) whereas another one is not (nestedness). Nestedness, a metric associated with network specialists, is a feature this network lacks. Species-level metrics such as degree, species strength, and module roles, are not maintained. Our work supports modularity as the most pervasive network-level metric of altered habitats. From a successional point of view, our results suggest that properties revealed by species-level indices may be developed at a later time, lagging the acquisition of structural elements.Antipredatory displays that incorporate hidden contrasting coloration are found in a variety of different animals. These displays are seen in organisms that have drab coloration at rest, but when disturbed reveal conspicuous coloration. Examples include the bright abdomens of mountain katydids and the colorful underwings of hawk moths. Such hidden displays can function as secondary defenses, enabling evasion of a pursuant predator. To begin to understand why some species have these displays while others do not, we conducted phylogenetic comparative analyses to investigate factors associated with the evolution of hidden contrasting coloration in leaf-footed bugs. First, we investigated whether hidden contrasting coloration was associated with body size because these displays are considered to be more effective in larger organisms. We then investigated whether hidden contrasting coloration was associated with an alternative antipredatory defense, in this case rapid autotomy. We found that leaf-footed bugs with hidden contrasting coloration tended to autotomize more slowly, but this result was not statistically significant. We also found that the presence of a body size association was dependent upon the form of the hidden color display. Leaf-footed bugs that reveal red/orange coloration were the same size, on average, as species without a hidden color display. However, species that reveal white patches on a black background were significantly larger than species without a hidden color display. These results highlight the diversity of forms that hidden contrasting color signal can take, upon which selection may act differently.Amazon and Cerrado-forested streams show natural fluctuations in leaf litter quantity along the time and space, suggesting a change on litter quality input. These natural fluctuations of leaf litter have repercussion on the organic matter cycling and consequently effects on leaf decomposition in forested streams. The effects of the quantity of leaf litter with contrasting traits on consumption by larvae of shredder insects from biomes with different organic matter dynamics have still been an understudied question. The Trichoptera Phylloicus spp. is a typical shredder in tropical headwater streams and keep an important role in leaf litter decomposition. Here, we assessed the consumption by shredder Phylloicus spp., from Amazonia and Cerrado biomes, on higher (Maprounea guianensis) and lower quality leaves (Inga laurina) in different proportions and quantities. Experiments were performed concomitantly in microcosms approaches, simulating Cerrado and Amazonian streams. Higher leaf consumption occurred in Cerrado microcosms.
Read More: https://www.selleckchem.com/products/liraglutide.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team