Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Liver fibrosis is a common link in the transformation of acute and chronic liver diseases to cirrhosis. It is of great clinical significance to study the factors associated with the induction of liver fibrosis and elucidate the method of reversal. Peroxisome proliferator-activated receptors (PPARs) are a class of nuclear transcription factors that can be activated by peroxisome proliferators. PPARs play an important role in fibrosis of various organs, especially the liver, by regulating downstream targeted pathways, such as TGF-β, MAPKs, and NF-κB p65. In recent years, the development and screening of PPAR-γ ligands have become a focus of research. The PPAR-γ ligands include synthetic hypolipidemic and antidiabetic drugs. In addition, microRNAs, lncRNAs, circRNAs and nano new drugs have attracted research interest. In this paper, the research progress of PPAR-γ in the pathogenesis and treatment of liver fibrosis was discussed based on the relevant literature in recent years.
The aim of this work was to develop a novel and feasible modification strategy by utilizing the supramolecular effect of 2-hydroxypropyl-beta-cyclodextrin (2-HP-β-CD) for enhancing the biological transport efficiency of paclitaxel (PTX)-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles.
PTX-loaded 2-HP-β-CD-modified PLGA nanoparticles (2-HP-β-CD/PLGA NPs) were prepared using the modified emulsion method. learn more Nano-characteristics, drug release behavior, in vitro cytotoxicity, cellular uptake profiles and in vivo bio-behavior of the nanoparticles were then characterized.
Compared with the plain PLGA NPs, 2-HP-β-CD/PLGA NPs exhibited smaller particle sizes (151.03±1.36 nm), increased entrapment efficiency (~49.12% increase) and sustained drug release. When added to A549 human lung cancer cells, compared with PLGA NPs, 2-HP-β-CD/PLGA NPs exhibited higher cytotoxicity in MTT assays and improved cellular uptake efficiency. Pharmacokinetic analysis showed that the AUC value of 2-HP-β-CD/PLGA NPs was 2.4-fold higher than commercial Taxol
and 1.7-fold higher than plain PLGA NPs. In biodistribution assays, 2-HP-β-CD/PLGA NPs exhibited excellent stability in the circulation.
The results of this study suggest that the formulation that contains 2-HP-β-CD can prolong PTX release, enhance drug transport efficiency and serve as a potential tumor targeting system for PTX.
The results of this study suggest that the formulation that contains 2-HP-β-CD can prolong PTX release, enhance drug transport efficiency and serve as a potential tumor targeting system for PTX.
Few pharmacodynamics studies to date have evaluated the efficacy and safety of polymyxin B (PMB) in treating patients with bloodstream infections (BSIs) in China.
Patients with BSIs were identified using an antimicrobial surveillance network, and their pathogens were isolated. Patients were treated with a loading dose of PMB followed by either a weight-based or weight-independent maintenance dose. Monte Carlo simulation was utilized to calculate the probability of target attainment (PTA) and cumulative fraction of response (CFR) against Gram-negative organisms in patients with normal or decreased renal function.
A total of 10,066 Gram-negative organisms, including 5500
(Eco), 2519
(Kpn), 501
(Aba), were isolated from patients with BSIs. Although these strains were highly resistant to carbapenem, they remained susceptible to PMB. Among patients with renal impairment (mean CrCL, 42 mL/min), a PMB 2.5 mg/kg loading dose followed by a maintenance dose of 60 mg q12h reached ≥90% PTA against isolatesreasing toxicity.
A 2.5 mg/kg loading dose of PMB is optimal, regardless of renal function. A fixed maintenance dose of 60 mg q12h is recommended for empirical treatment of patients with renal impairment infected with Eco, Kpn, and Aba, whereas a weight-based maintenance dose of 1.25 mg/kg is recommended for patients with normal renal function.
A 2.5 mg/kg loading dose of PMB is optimal, regardless of renal function. A fixed maintenance dose of 60 mg q12h is recommended for empirical treatment of patients with renal impairment infected with Eco, Kpn, and Aba, whereas a weight-based maintenance dose of 1.25 mg/kg is recommended for patients with normal renal function.
Novel radiotracer development for imaging dopamine transporters is a subject of interest because although [
Tc]TRODAT-1, [
I]β-CIT, and [
I]FP-CIT are commercially available;
Mo/
Tc generator is in short supply and
I production is highly dependent on compact cyclotron. Therefore, we designed a novel positron emission tomography (PET) tracer based on a tropane derivative through C-2 modification to conjugate NOTA for chelating
Ga, a radioisotope derived from a
Ge/
Ga generator.
IPCAT-NOTA
was synthesized and labeled with [
Ga]GaCl
at room temperature. Biological studies on serum stability, LogP, and in vitro autoradiography (binding assay and competitive assay) were performed. Furthermore, ex vivo autoradiography, biodistribution, and dynamic PET imaging studies were performed in Sprague Dawley rats.
[
Ga]IPCAT-NOTA
obtained had a radiochemical yield of ≥90% and a specific activity of 4.25 MBq/nmol. [
Ga]IPCAT-NOTA
of 85% radiochemical purity (RCP%) was stable at 37°C for upracranial injection must be used to prove the relation between [68Ga]IPCAT-NOTA 24 uptake and transporter localization.
Non-alcoholic fatty liver disease (NAFLD) is one of the primary causes of chronic liver disease and is closely linked to insulin resistance, type 2 diabetes mellitus (T2DM), and dyslipidemia. However, no effective drug therapies have been approved to treat this disease. The present research aimed to evaluate the therapeutic effects of the combination of oral hypoglycemic drug metformin (MET) and a natural product malvidin (MAL) on hepatic damage in HFD/STZ-induced diabetic rats.
Sprague-Dawley rats were divided into five groups normal control group (NC), diabetic control group (DC), DC+MET group, DC+MAL group, and DC+MET+MAL group and treated for eight weeks. Blood and liver tissue samples were collected for metabolic parameters, histological, and RT-qPCR analysis.
Our findings indicated that hyperglycemia, insulin resistance, hyperlipidemia, and non-alcoholic fatty liver disease (NAFLD) in diabetic rats were alleviated after oral treatment with MET and MAL, particularly their combination therapy. Besides, the expression of SREBP-1c, ACC, FAS, IL-6, IL-8, and NF-κB mRNA was down-regulated by MET+MAL, and the expression of PPARα, CPT1, and LPL was up-regulated by MET+MAL.
Here's my website: https://www.selleckchem.com/products/CHIR-258.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team