Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A hepatoblastoma in a 6-month-old child was initially considered unresectable because of diffuse liver involvement. The patient received 4 courses of cisplatin with an interval time of 2 weeks. A computed tomography scan after 4 courses of chemotherapy showed shrinking of the tumor, which made it resectable, and the tumor was removed by central hepatectomy. The patient was able to eat a regular diet on the fourth day and was sent home on the seventh day, after the operation. The pediatric oncologist followed the patient with liver ultrasonography and alpha-fetoprotein and administered 2 more cycles of cisplatin.We report here a case of mandibular osteomyelitis in a 63-year-old female in which quantitative values determined using bone SPECT/CT were useful to evaluate response to antibiotic therapy, hyperbaric oxygen therapy, and sequestomy. After finishing therapy, the chief complaints were well relieved, and posttreatment Tc-99m HMDP bone SPECT/CT examination showed decreased uptake. The maximum standardized uptake value (SUV), peak SUV, mean SUV, metabolic bone volume, and total bone uptake of the untreated lesion were 6.26, 5.16, 3.97, and 11.86 mL and 42.21, respectively, which were decreased to 4.65, 3.90, 2.77, and 9.67 mL and 26.80, respectively, following hyperbaric oxygen therapy and antibiotic administration, and were moreover decreased to 4.28, 3.67, 2.75, and 6.24 mL and 17.19, respectively, after sequestomy. In comparison with pretreatment situation, those parameters were decreased by -25.7, -24.4, -30.2, -18.5, and -36.5%, respectively, following hyperbaric oxygen therapy and antibiotic administration, and moreover by -31.6, -28.9, -30.7, -47.4, and -59.3, respectively, after sequestomy, likely reflecting treatment response. Quantitative bone SPECT/CT may be useful to evaluate bone inflammatory activity and treatment response in a patient with mandibular osteomyelitis.Self-appraisal is a process that leads to the formation of self-esteem, which contributes to subjective well-being and mental health. Neuroimaging studies link self-esteem with the activity of the medial prefrontal cortex (MPFC), right temporoparietal junction (rTPJ), posterior cingulate cortex (PCC), anterior insula (AIns), and dorsolateral prefrontal cortex. It is not known, however, how the process of self-appraisal itself is mediated by the brain and how different nodes of the self-appraisal network interact with each other. In this study, we used multilevel mediation analysis of functional MRI data recorded during the trait adjective judgment task, treating the emotional valence of adjectives as the predictor, behavioral response as the dependent variable, and brain activity as the mediator. The mediation effect was revealed in the rTPJ. Dynamic causal modeling showed that positive self-descriptions trigger communication within the network, with the rTPJ exerting the strongest excitatory output and MPFC receiving the strongest excitatory input. rAIns receives the strongest inhibitory input and sends exclusively inhibitory connections to other regions pointing out to its role in the processing of negative self-descriptions. Analysis of individual differences showed that in some individuals, self-appraisal is mostly driven by the endorsement of positive self-descriptions and is accompanied by increased activation and communication between rTPJ, MPFC, and PCC. In others, self-appraisal is driven by the rejection of negative self-descriptions and is accompanied by increased activation of rAIns and inhibition of PCC and MPFC. Membership of these groups was predicted by different personality variables. This evidence uncovers different mechanisms of positive self-bias, which may contribute to different facets of self-esteem and are associated with different personality profiles.Action video gaming (AVG) places sustained cognitive load on various behavioral systems, thus offering new insights into learning-related neural plasticity. This study aims to determine whether AVG experience is associated with resting-state electroencephalogram (rs-EEG) temporal and spatial complexity, and if so, whether this effect is observable across AVG subgenres. Two AVG games - League of Legends (LOL) and Player Unknown's Battle Grounds (PUBG) that represent two major AVG subgenres - were examined. We compared rs-EEG microstate and omega complexity between LOL experts and non-experts (Experiment 1) and between PUBG experts and non-experts (Experiment 2). We found that the experts and non-experts had different rs-EEG activities in both experiments, thus revealing the adaptive effect of AVG experience on brain development. Furthermore, we also found certain subgenre-specific complexity changes, supporting the recent proposal that AVG should be categorized based on the gaming mechanics of a specific game rather than a generic genre designation.Introduction Pigs have been an increasingly popular preclinical model in nutritional neuroscience, as their anatomy, physiology, and nutrition requirements are highly comparable to those of humans. Eyeblink conditioning is one of the most well-validated behavioral paradigms in neuroscience to study underlying mechanisms of learning and memory formation in the cerebellum. Eyeblink conditioning has been performed in many species but has never been done on young pigs. Therefore, our aim here was to develop and validate an eyeblink conditioning paradigm in young pigs. Method Eighteen intact male pigs were artificially reared from postnatal day 2-30. The eyeblink conditioning setup consisted of a sound-damping box with a hammock that pigs were placed in, which allowed the pig to remain comfortable yet maintain a typical range of head motion. In a delay conditioning paradigm, the conditional stimulus (CS) was a 550 ms blue light-emitting diode (LED), the unconditional stimulus (US) was a 50 ms eye air-puff, the CS-sk, demonstrating for the first time that eyeblink conditioning in young pigs has the potential to be a valuable behavioral tool to measure neurodevelopment.The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called 'eversive' development in contrast to the 'evagination' found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordina in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.Microglia are the brain's immunocompetent macrophages with a unique feature that allows surveillance of the surrounding microenvironment and subsequent reactions to tissue damage, infection, or homeostatic perturbations. Thereby, microglia's striking morphological plasticity is one of their prominent characteristics and the categorization of microglial cell function based on morphology is well established. Frequently, automated classification of microglial morphological phenotypes is performed by using quantitative parameters. As this process is typically limited to a few and especially manually chosen criteria, a relevant selection bias may compromise the resulting classifications. In our study, we describe a novel microglial classification method by morphological evaluation using a convolutional neuronal network on the basis of manually selected cells in addition to classical morphological parameters. We focused on four microglial morphologies, ramified, rod-like, activated and amoeboid microglia within the murine hippocampus and cortex. The developed method for the classification was confirmed in a mouse model of ischemic stroke which is already known to result in microglial activation within affected brain regions. In conclusion, our classification of microglial morphological phenotypes using machine learning can serve as a time-saving and objective method for post-mortem characterization of microglial changes in healthy and disease mouse models, and might also represent a useful tool for human brain autopsy samples.Zinc and copper are important trace elements necessary for the proper functioning of neurons. Impaired zinc and/or copper metabolism and signaling are implicated in many brain diseases, including autism (ASD). learn more In our studies, autistic-like behavior in rat offsprings was induced by application to pregnant mothers valproic acid or thalidomide. Zinc and copper contents were measured in serum and brain structures hippocampus, cerebral cortex, and cerebellum. Our research shows no interconnections in the particular metal concentrations measured in autistic animal brains and their sera. Based on patient researches, we studied 26 genes belonging to disturbed neurotransmitter pathways. In the same brain regions, we examined the expression of genes encoding proteins of cholinergic, adrenergic, serotonin, and dopamine receptors. In both rats' ASD models, 17 out of the tested gene expression were decreased. In the cerebellum and cerebral cortex, expression of genes encoding cholinergic, adrenergic, and dopaminergic receptors decreased, whereas in the hippocampus only expression of serotoninergic receptors genes was downregulated. The changes in metals content observed in the rat brain can be secondary phenomena, perhaps elements of mechanisms that compensate for neurotransmission dysfunctions.
Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.
HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played
instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.
First, we corroborated the role by changes in functional brain connectivity during resting state.Neuromorphic devices that can emulate the bionic sensory and perceptual functions of neural systems have great applications in personal healthcare monitoring, neuro-prosthetics, and human-machine interfaces. In order to realize bionic sensing and perception, it's crucial to prepare neuromorphic devices with the function of perceiving environment in real-time. Up to now, lots of efforts have been made in the incorporation of the bio-inspired sensing and neuromorphic engineering in the booming artificial intelligence industry. In this review, we first introduce neuromorphic devices based on diverse materials and mechanisms. Then we summarize the progress made in the emulation of biological sensing and perception systems. Finally, the challenges and opportunities in these fields are also discussed.
Homepage: https://www.selleckchem.com/products/gsk3685032.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team