Notes
Notes - notes.io |
The Laser Retroreflector Array for Lunar Landers (LRALL) is a small optical instrument designed to provide a target for precision laser ranging from a spacecraft in lunar orbit, enabling geolocation of the lander and its instrument suite and establishing a fiducial maker on the lunar surface. Here we describe the optical performance of LRALL at visible and near-infrared wavelengths. learn more Individual corner cube reflectors (CCRs) within LRALL were tested for surface flatness and dihedral angle values. We also imaged the far-field diffraction patterns of individual CCRs as well as the entire retroreflector array over the range of possible incident angles to extract the optical cross section as a function of viewing angle. We also measured the optical properties of one of the CCRs over the lunar temperature range (100-380 K) and found no significant temperature-dependent variance. The test results show LRALL meets the design criteria and can be ranged to elevation angles above 30° with respect to the instrument base from an orbital laser altimeter such as the Lunar Orbiter Laser Altimeter on the Lunar Reconnaissance Orbiter. This work summarizes the test data and serves as a guide for future laser ranging to these retroreflector arrays.We consider a method for designing freeform mirrors generating prescribed irradiance distributions in the far field. The method is based on the formulation of the problem of calculating a ray mapping as a Monge-Kantorovich mass transportation problem and on the reduction of the latter problem to a linear assignment problem. As examples, we design freeform mirrors generating a uniform irradiance distribution in a rectangular region and a complex chessboard-shaped distribution. The mirror generating a rectangular irradiance distribution is fabricated and experimentally investigated. The experimental results are in good agreement with the numerical simulations and confirm the manufacturability of the mirrors designed using the considered method.We present a theoretical and experimental study on the impact of different thermal-induced free-space turbulence distributions on the M-quadrature amplitude modulation (M-QAM) signal transmission in radio frequency K-band over hybrid optical links of standard single mode fiber (SSMF) and free-space optics (FSO). Frequency multiplication using an external intensity modulator biased at the null transmission point has been employed to photonically generate radio signals at a frequency of 25 GHz , included for the frequency bands for fifth-generation (5G) mobile networks. Moreover, extensive simulations have been performed for 10Gb/s with 4-, 16-, and 64-QAM over 5 km of SSMF and 500 m long FSO channels under scenarios with different turbulence levels and distributions. Proof-of-concept experiments have been conducted for 20 MHz with 4- and 64-QAM over 5 km of SSMF and 2 m long FSO channels under turbulence conditions. Both theoretical and experimental systems have been analyzed in terms of error vector magnitude (EVM) performance showing feasible transmission over the hybrid links in the received optical power range. Non-uniform turbulence distributions are shown to have a different impact on M-QAM modulation formats, i.e., turbulence distributions with higher strength in the middle of the FSO link reveal a 1.9 dB penalty when using 64-QAM signals compared to a 1.3 dB penalty using 4-QAM signals, whereas higher penalties have been measured when 4-QAM format is transmitted over turbulence distributions with larger magnitude in the second half of the FSO link. The results have been validated by theoretical predictions and lead to practical consequences on future networks' deployment.We investigate the impact of input pulse duration and peak power of a femtosecond laser on pulse broadening and propagation losses in selected hollow-core antiresonant fiber (HC-ARF). The mixed effects of strong self-phase modulation and relatively weak Raman scattering broaden the spectral width, which in turn causes a portion of the output spectrum to exceed the transmission band of the fiber, resulting in transmission losses. By designing and setting up a gas flow control system and a vacuum system, the nonlinear behavior of the fiber filled with different pressurized gases is investigated. The experimental results show that replacing the air molecules in the fiber core with argon can weaken pulse broadening and increase the transmittable peak power by 14 MW for a given 122 MW input, while a vacuum system can reduce the nonlinearity to a larger extent, therefore enhancing the transmission of HC-ARF by at least 26 MW.A mathematical model considering the transmission of a partially coherent Gaussian Schell-model (GSM) beam in slant turbulence atmosphere of heterodyne detection was established. A closed-form expression of the weighting factor for the partially GSM beam at the receiving end was derived. The effect of the beam mode on the performance of the proposed detection system was theoretically investigated. The results show that the proportion of the fundamental mode and heterodyne efficiency can be optimized by controlling the waist radius of the signal and local oscillator beams. The inner scale of turbulence significantly affects the heterodyne efficiency and normalized M2. With a larger mode order, the proportion of the fundamental mode and heterodyne efficiency are lowered.In this paper, we propose a broadband tunable metamaterial absorber in the terahertz (THz) region. The absorber comprises a Dirac semimetal film, a dielectric layer, and a gold ground plane. Numerical results show that the absorptivity remains above 90% in the range from 5.7 THz to 8.4 THz when the Fermi level is 65 meV. By varying the Fermi energy of the Dirac semimetal film from 40 meV to 80 meV, the absorption bandwidth and absorption peaks can be dynamically tuned. To explain the mechanism of high absorption, the magnetic field, surface current, and power loss density distributions at different resonant frequencies were presented. Our work may have potential applications in various fields such as sensors, detectors, and photovoltaic devices in THz regions.
Homepage: https://www.selleckchem.com/products/Abitrexate.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team