Notes
![]() ![]() Notes - notes.io |
In this article we forecast daily closing price series of Bitcoin, Litecoin and Ethereum cryptocurrencies, using data on prices and volumes of prior days. Cryptocurrencies price behaviour is still largely unexplored, presenting new opportunities for researchers and economists to highlight similarities and differences with standard financial prices. We compared our results with various benchmarks one recent work on Bitcoin prices forecasting that follows different approaches, a well-known paper that uses Intel, National Bank shares and Microsoft daily NASDAQ closing prices spanning a 3-year interval and another, more recent paper which gives quantitative results on stock market index predictions. 1-Thioglycerol We followed different approaches in parallel, implementing both statistical techniques and machine learning algorithms the Simple Linear Regression (SLR) model for uni-variate series forecast using only closing prices, and the Multiple Linear Regression (MLR) model for multivariate series using both price and volume data. We used two artificial neural networks as well Multilayer Perceptron (MLP) and Long short-term memory (LSTM). While the entire time series resulted to be indistinguishable from a random walk, the partitioning of datasets into shorter sequences, representing different price "regimes", allows to obtain precise forecast as evaluated in terms of Mean Absolute Percentage Error(MAPE) and relative Root Mean Square Error (relativeRMSE). In this case the best results are obtained using more than one previous price, thus confirming the existence of time regimes different from random walks. Our models perform well also in terms of time complexity, and provide overall results better than those obtained in the benchmark studies, improving the state-of-the-art.Application of deep neural network is a rapidly expanding field now reaching many disciplines including genomics. In particular, convolutional neural networks have been exploited for identifying the functional role of short genomic sequences. These approaches rely on gathering large sets of sequences with known functional role, extracting those sequences from whole-genome-annotations. These sets are then split into learning, test and validation sets in order to train the networks. While the obtained networks perform well on validation sets, they often perform poorly when applied on whole genomes in which the ratio of positive over negative examples can be very different than in the training set. We here address this issue by assessing the genome-wide performance of networks trained with sets exhibiting different ratios of positive to negative examples. As a case study, we use sequences encompassing gene starts from the RefGene database as positive examples and random genomic sequences as negative examples. We then demonstrate that models trained using data from one organism can be used to predict gene-start sites in a related species, when using training sets providing good genome-wide performance. This cross-species application of convolutional neural networks provides a new way to annotate any genome from existing high-quality annotations in a related reference species. It also provides a way to determine whether the sequence motifs recognised by chromatin-associated proteins in different species are conserved or not.Comparison of hierarchies aims at identifying differences and similarities between two or more hierarchical structures. In the biological taxonomy domain, comparison is indispensable for the reconciliation of alternative versions of a taxonomic classification. Biological taxonomies are knowledge structures that may include large amounts of nodes (taxa), which are typically maintained manually. We present the results of a user study with taxonomy experts that evaluates four well-known methods for the comparison of two hierarchies, namely, edge drawing, matrix representation, animation and agglomeration. Each of these methods is evaluated with respect to seven typical biological taxonomy curation tasks. To this end, we designed an interactive software environment through which expert taxonomists performed exercises representative of the considered tasks. We evaluated participants' effectiveness and level of satisfaction from both quantitative and qualitative perspectives. Overall quantitative results evidence that participants were less effective with agglomeration whereas they were more satisfied with edge drawing. Qualitative findings reveal a greater preference among participants for the edge drawing method. In addition, from the qualitative analysis, we obtained insights that contribute to explain the differences between the methods and provide directions for future research.When, where and how people move is a fundamental part of how human societies organize around every-day needs as well as how people adapt to risks, such as economic scarcity or instability, and natural disasters. Our ability to characterize and predict the diversity of human mobility patterns has been greatly expanded by the availability of Call Detail Records (CDR) from mobile phone cellular networks. The size and richness of these datasets is at the same time a blessing and a curse while there is great opportunity to extract useful information from these datasets, it remains a challenge to do so in a meaningful way. In particular, human mobility is multiscale, meaning a diversity of patterns of mobility occur simultaneously, which vary according to timing, magnitude and spatial extent. To identify and characterize the main spatio-temporal scales and patterns of human mobility we examined CDR data from the Orange mobile network in Senegal using a new form of spectral graph wavelets, an approach from manifold learning. This unsupervised analysis reduces the dimensionality of the data to reveal seasonal changes in human mobility, as well as mobility patterns associated with large-scale but short-term religious events. The novel insight into human mobility patterns afforded by manifold learning methods like spectral graph wavelets have clear applications for urban planning, infrastructure design as well as hazard risk management, especially as climate change alters the biophysical landscape on which people work and live, leading to new patterns of human migration around the world.
My Website: https://www.selleckchem.com/products/1-thioglycerol.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team