Notes
![]() ![]() Notes - notes.io |
Peritoneal carcinomatosis (PC) has an extremely poor prognosis, which leads to a significantly decreased overall survival in patients with peritoneal implantation of cancer cells. Administration of sodium selenite by intraperitoneal injection is highly effective in inhibiting PC. Our previous study found that selenium nanoparticles (SeNPs) have higher redox activity and safety than sodium selenite. In the present study, we examined the therapeutic effect of SeNPs on PC and elucidated the potential mechanism. Our results revealed that intraperitoneal delivery of SeNPs to cancer cells in the peritoneal cavity of mice at a tolerable dose was beneficial for prolonging the survival time of mice, even better than the optimal dose of cisplatin. The underlying mechanism involved in SeNP-induced reactive oxygen species (ROS) production caused protein degradation and apoptotic response in cancer cells. Interestingly, N-acetyl-l-cysteine (NAC), recognized as a ROS scavenger, without reducing the efficacy of SeNPs, enhanced ROS production and cytotoxicity. The effect of NAC was associated with the following mechanisms (1) the thiol groups in NAC can increase the biosynthesis of endogenous glutathione (GSH), thus increasing the production of SeNP-induced ROS and cytotoxicity and (2) redox cycling of SeNPs was directly driven by thiol groups in NAC to produce ROS. Moreover, NAC, without increasing the systematic toxicity of SeNPs, decreased SeNP-induced lethality in healthy mice. Overall, we demonstrated that SeNPs exert a potential cytotoxicity effect by inducing ROS production in cancer cells; NAC effectively heightens the property of SeNPs in vitro and in vivo.The demand for aromatics, especially benzene, toluene, and xylene, has been increased in recent years as the crucial feedstocks of coatings and pharmaceutical industry. In this work, a modified Fischer-Tropsch synthesis (FTS) catalyst FeNaMg was fabricated via a sol-precipitation method and integrated with an HZSM-5 aromatization catalyst for the aromatics synthesis from syngas by a one-step process. Syngas was first converted to lower olefins as intermediates on the active component of the FeNaMg catalyst followed by aromatization on zeolite. Different characterization approaches, such as BET, XRD, XPS, hydrogen temperature-programmed reduction, temperature-programmed desorption of CO, TG, and SEM, revealed that Mg efficiently optimized physicochemical properties of the Fe-based catalyst by generating a MgFe2O4 spinel structure. Further investigation demonstrated that the MgFe2O4 spinel structure could increase the syngas adsorption area, facilitating the reduction and carburization of the Fe phase, while Mg decreased CO2 selectivity (31.26 to21%) by restraining the water-gas shift reaction and improved the utilization efficiency of carbon. At the same time, alkali metal Na changed the surface electronic environment of the FTS catalyst to enhance CO adsorption as an electronic promoter, which suppressed methane formation by restraining over hydrogenation. Therefore, the synergism that existed between Mg and Na during the reaction escalated the CO conversion and aromatics selectivity to 96.19 and 51.38%, respectively.It is the first time that cadmium sulfide (CdS) nanorods have been fabricated on silicon (Si) pyramid surface by the hydrothermal reaction method. In our work, the Si pyramid morphology is able to increase the adhesion between the CdS seed layer and Si wafer. Hence, it is critical for CdS nanorods to grow successfully. During the fabrication process, the glutathione is used as the complexing agent for the formation of the CdS nanorods. By continuously adjusting the experimental conditions, the thickness of the CdS seed layer, the concentration of the glutathione, and the temperature and time of the hydrothermal reaction, the optimal condition for CdS nanorods growth on Si pyramid surface is 80 nm seed layer, 0.2-0.3 mmol glutathione, 200 °C, and 1.5 h. check details The Cd and S elements have a ratio of 11.03 from the energy-dispersive spectroscopy test, which is in agreement with the stoichiometric composition of CdS. The CdS nanorods have a bandwidth of 2.22 eV through the optical absorption spectra. The photosensitivity response test results reveal these CdS nanorods on the Si pyramid structure have an obvious photosensitive effect. From the analysis, the CdS nanorods can grow on any morphological Si surface if the adhesion between the CdS seed layer and the Si surface is strong enough.Reversible CO2 binders under ambient conditions are of significant interest for multiple applications in sensing and capture technologies. In this paper, a general systematic way to evaluate CO2 receptors with π-systems is put forward. A series of receptors (five pyridine-based and one triazine-based) are evaluated as CO2 binders in terms of number of hydrogen bonding sites, strength of hydrogen bond donors, and number of nucleophilic sites. The binding of CO2 to the receptors was probed by computational models, absorption spectroscopy, fluorescence spectroscopy, cyclic voltammetry, and 1H NMR studies. Multiple solvents with varying ionic strength additives are probed to analyze the effects on CO2-bound intermediates. The receptors were screened progressively down-selecting through the different analytical techniques arriving at a promising pyridine receptor, which shows evidence of CO2 binding with each of the analytical techniques. The diaminopyridine motif demonstrates reversible CO2 binding and has convenient substitution sites for derivatization to incorporate into functional sensor systems.Formation of amyloid fibrils by misfolding α-synuclein is a characteristic feature of Parkinson's disease, but the exact molecular mechanism of this process has long been an unresolved mystery. Identification of critical amyloid peptide fragments from α-synuclein may hold the key to decipher this mystery. Focusing on consecutive hydrophobic amino acids (CHAA) in the protein sequence, in this study we proposed a sequence-based strategy for direct identification of amyloid peptide fragments in α-synuclein. We picked out three CHAA fragments (two hexapeptides and one tetrapeptide) from α-synuclein and studied their amyloidogenic property. The thioflavin-T binding test, transmission electron microscopy, Congo red staining, and Fourier transform infrared spectroscopy revealed that although only hexapeptides could undergo amyloid aggregation on their own, extended peptide fragments based on any of the three peptides could form typical amyloid fibrils. Primary amyloidogenic fragments based on the three peptides showed synergetic aggregation behavior and could accelerate the aggregation of full-length α-synuclein.
Read More: https://www.selleckchem.com/products/picropodophyllin-ppp.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team