Notes
![]() ![]() Notes - notes.io |
Poly(l-lactide-co-d,l-lactide) PDLA/45S5 Bioglass® (BG) composites for medical devices were developed using an original approach based on a thermal treatment of BG prior to processing. The aim of the present work is to gain a fundamental understanding of the relationships between the morphology, processing conditions and final properties of these biomaterials. A rheological study was performed to evaluate and model the PDLA/BG degradation during processing. The filler contents, as well as their thermal treatments, were investigated. The degradation of PDLA was also investigated by Fourier transform infrared (FTIR) spectroscopy, size-exclusion chromatography (SEC) and mechanical characterization. The results highlight the value of thermally treating the BG in order to control the degradation of the polymer during the process. The present work provides a guideline for obtaining composites with a well-controlled particle dispersion, optimized mechanical properties and limited degradation of the PDLA matrix.In this study, cellulose acetate (CA)/cellulose nanofibril (CNF) film was prepared via solvent casting. CNF was used as reinforcement to increase tensile properties of CA film. CNF ratio was varied into 3, 5, and 10 phr (parts per hundred rubbers). Triacetin (TA) and triethyl citrate (TC) were used as two different eco-friendly plasticizers. Two different types of solvent, which are acetone and N-methyl-2-pyrrolidone (NMP), were also used. CA/CNF film was prepared by mixing CA and CNF in acetone or NMP with 10% concentration and stirred for 24 h. Then, the solution was cast in a polytetrafluoroethylene (PTFE) dish followed by solvent evaporation for 12 h at room temperature for acetone and 24 h at 80 °C in an oven dryer for NMP. The effect of solvent type, plasticizers type, and CNF amount on film properties was studied. Exarafenib Good dispersion in NMP was evident from the morphological study of fractured surface and visible light transmittance. The results showed that CNF has a better dispersion in NMP which leads to a significant increase in tensile strength and elastic modulus up to 38% and 65%, respectively, compared with those of neat CA. CNF addition up to 5 phr loading increased the mechanical properties of the film composites.Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.Microplastics reach the aquatic environment through wastewater. Larger debris is removed in sewage treatment plants, but filters are not explicitly designed to retain sewage sludge's microplastic or terrestrial soils. Therefore, the effective quantification of filtration system to mitigate microplastics is needed. To mitigate microplastics, various devices have been designed, and the removal efficiency of devices was compared. However, this study focused on identifying different fabrics that shed fewer microplastics. Therefore, in this study, fabric-specific analyses of microplastics of three different fabrics during washing and drying processes were studied. Also, the change in the generation of microplastics for each washing process of standard washing was investigated. The amount of microplastics released according to the washing process was analyzed, and the collected microplastics' weight, length, and diameter were measured and recorded. According to the different types of yarn, the amount of microplastic fibers produced during washing and drying varied. As the washing processes proceed, the amount of microplastics gradually decreased. The minimum length (>40 µm) of micro-plastics generated were in plain-woven fabric. These results will be helpful to mitigate microplastics in the production of textiles and in selecting built-in filters, and focusing on the strict control of other parameters will be useful for the development of textile-based filters, such as washing bags.Membrane distillation is an active technique that provides pure water with very good rejection and could be applied to water of extremely high salinity. The low productivity of membrane distillation needs intensive efforts to be competitive with other desalination techniques. In this current study, a composite (PS/GNP) membrane, which is composed of polystyrene (PS) based and 0.25% weight percent graphene nanoplates (GNP) has been fabricated via electrospinning and compared with the blank PS membrane. SEM, FTIR, contact angle and porosity characterization have been performed, and the results show that the validity of the predefined conditions, and the contact angle of the composite membrane, which is found to be 91.68°, proved the hydrophobic nature of the composite membrane. A numerical simulation using Ansys 2020 software has been introduced to study the performance of the fabricated composite membrane when used in direct contact membrane distillation (DCMD). The numerical model has been validated with experimental work from the literature and showed an excellent match. The blank PS and composite PS/GNP membranes have been investigated and compared at different operating conditions, i.e., hot water supply temperature and system flow rate. The results show that the composite PS/GNP membrane outperforms the blank PS membrane at all studied operating conditions.This study addresses the mechanical behavior of lattice materials based on flexible thermoplastic polyurethane (TPU) with honeycomb and gyroid architecture fabricated by 3D printing. Tensile, compression, and three-point bending tests were chosen as mechanical testing methods. The honeycomb architecture was found to provide higher values of rigidity (by 30%), strength (by 25%), plasticity (by 18%), and energy absorption (by 42%) of the flexible TPU lattice compared to the gyroid architecture. The strain recovery is better in the case of gyroid architecture (residual strain of 46% vs. 31%). TPUs with honeycomb architecture are characterized by anisotropy of mechanical properties in tensile and three-point bending tests. The obtained results are explained by the peculiarities of the lattice structure at meso- and macroscopic level and by the role of the pore space.Self-Compacting Concrete (SCC) is a unique kind of concrete that tends to consolidate in terms of its weight. In this study, the prime target is to investigate the durability properties of SCC developed using eco-friendly economical waste binding materials as partial replacement to costly cement. This circular economy concept will not only help in the development of green concrete but will also help to improve the climatic condition by reducing the use and production of cement. An economical design methodology has been applied to produce environmentally friendly construction material. This research focuses on the application of Alum Sludge (AS) and Brick Dust (BD) in Self-Compacting Concrete (SCC). Both materials are waste materials containing binding properties. Performance of SCC developed using these two materials was tested considering mechanical properties of concrete using the destructive testing technique. Results showed that BD and AS can be utilized for up to 12% and 9% of replacement of cement, respectively, to achieve equal or higher compressive, tensile, and flexural strength. The application of BD and AS has demonstrated a subsequent improvement of SCC's mechanical properties, i.e., compressive, tensile, and flexural strength. This study will help the production of composite green materials with the help of eco-friendly and economical waste materials for sustainable infrastructure development.Using a homemade pressure device, we explored the synergistic effect of pressurization rate and β-form nucleating agent (β-NA) on the crystallization of an isotactic polypropylene (iPP) melt. The obtained samples were characterized by combining small angle X-ray scattering and synchrotron wide angle X-ray diffraction. It was found that the synergistic application of pressurization and β-NA enables the preparation of a unique multi-phase crystallization of iPP, including β-, γ- and/or mesomorphic phases. Pressurization rate plays a crucial role on the formation of different crystal phases. As the pressurization rate increases in a narrow range between 0.6-1.9 MPa/s, a significant competitive formation between β- and γ-iPP was detected, and their relative crystallinity are likely to be determined by the growth of the crystal. When the pressurization rate increases further, both β- and γ-iPP contents gradually decrease, and the mesophase begins to emerge once it exceeds 15.0 MPa/s, then mesomorphic, β- and γ- iPP coexist with each other. Moreover, with different β-NA contents, the best pressurization rate for β-iPP growth is the same as 1.9 MPa/s, while more β-NA just promotes the content of β-iPP under the rates lower than 1.9 MPa/s. In addition to inducing the formation of β-iPP, it shows that β-NA can also significantly promote the formation of γ-iPP in a wide pressurization rate range between 3.8 to 75 MPa/s. These results were elucidated by combining classical nucleation theory and the growth theory of different crystalline phases, and a theoretical model of the pressurization-induced crystallization is established, providing insight into understanding the multi-phase structure development of iPP.Self-healing materials can prolong the lifetime of structures and products by enabling the repairing of damage. However, detecting the damage and the progress of the healing process remains an important issue. In this study, self-healing, piezoresistive strain sensor fibers (ShSFs) are used for detecting strain deformation and damage in a self-healing elastomeric matrix. The ShSFs were embedded in the self-healing matrix for the development of self-healing sensor fiber composites (ShSFC) with elongation at break values of up to 100%. A quadruple hydrogen-bonded supramolecular elastomer was used as a matrix material. The ShSFCs exhibited a reproducible and monotonic response. The ShSFCs were investigated for use as sensorized electronic skin on 3D-printed soft robotic modules, such as bending actuators. Depending on the bending actuator module, the electronic skin was loaded under either compression (pneumatic-based module) or tension (tendon-based module). In both configurations, the ShSFs could be successfully used as deformation sensors, and in addition, detect the presence of damage based on the sensor signal drift.
My Website: https://www.selleckchem.com/products/exarafenib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team