NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Mesenchymal Stem Cell-Conditioned Mass media Manage Steroidogenesis and also Prevent Androgen Release in a Polycystic ovarian syndrome Cell Style through BMP-2.
Elevated intraocular pressure (IOP) results in endothelial layer damage that can induce corneal hydration perturbations. We investigated the potential of terahertz spectroscopy in measuring the IOP levels through mapping corneal water content. We controlled the IOP levels in ex vivo rabbit and porcine eye samples while monitoring the change in corneal hydration using a terahertz time-domain spectroscopy (THz-TDS) scanner. Our results showed a statistically significant increase in the THz reflectivity between 0.4 and 0.6 THz corresponding to the increase in the IOP. Endothelial layer damage was confirmed using scanning electron microscopy (SEM) of the corneal biopsy samples. Our empirical results indicate that the THz-TDS can be used to track IOP levels through the changes in corneal hydration.Optical trapping is a vital tool in biology, allowing precise optical manipulation of nanoparticles, micro-robots, and cells. Due to the low risk of photodamage and high trap stiffness, fiber-based dual-beam traps are widely used for optical manipulation of large cells. Besides trapping, advanced applications like 3D refractive index tomography need a rotation of cells, which requires precise control of the forces, for example, the acting-point of the forces and the intensities in the region of interest (ROI). A precise rotation of large cells in 3D about arbitrary axes has not been reported yet in dual-beam traps. We introduce a novel dual-beam optical trap in which a multi-core fiber (MCF) is transformed to a phased array, using wavefront shaping and computationally programmable light. The light-field distribution in the trapping region is holographically controlled within 0.1 s, which determines the orientation and the rotation axis of the cell with small retardation. We demonstrate real-time controlled rotation of HL60 cells about all 3D axes with a very high degree of freedom by holographic controlled light through an MCF with a resolution close to the diffraction limit. For the first time, the orientation of the cell can be precisely controlled about all 3D axes in a dual-beam trap. MCFs provide much higher flexibility beyond the bulky optics, enabling lab-on-a-chip applications and can be easily integrated for applications like contactless cell surgery, refractive index tomography, cell-elasticity measurement, which require precise 3D manipulation of cells.The phasor approach is a well-established method for data visualization and image analysis in spectral and lifetime fluorescence microscopy. Nevertheless, it is typically applied in a user-dependent manner by manually selecting regions of interest on the phasor space to find distinct regions in the fluorescence images. In this paper we present our work on using machine learning clustering techniques to establish an unsupervised and automatic method that can be used for identifying populations of fluorescent species in spectral and lifetime imaging. We demonstrate our method using both synthetic data, created by sampling photon arrival times and plotting the distributions on the phasor plot, and real live cells samples, by staining cellular organelles with a selection of commercial probes.We present the LUCA device, a multi-modal platform combining eight-wavelength near infrared time resolved spectroscopy, sixteen-channel diffuse correlation spectroscopy and a clinical ultrasound in a single device. By simultaneously measuring the tissue hemodynamics and performing ultrasound imaging, this platform aims to tackle the low specificity and sensitivity of the current thyroid cancer diagnosis techniques, improving the screening of thyroid nodules. Here, we show a detailed description of the device, components and modules. Furthermore, we show the device tests performed through well established protocols for phantom validation, and the performance assessment for in vivo. The characterization tests demonstrate that LUCA device is capable of performing high quality measurements, with a precision in determining in vivo tissue optical and dynamic properties of better than 3%, and a reproducibility of better than 10% after ultrasound-guided probe repositioning, even with low photon count-rates, making it suitable for a wide variety of clinical applications.Three-dimensional fluorescence-based imaging of living cells and organisms requires the sample to be exposed to substantial excitation illumination energy, typically causing phototoxicity and photobleaching. Light sheet fluorescence microscopy dramatically reduces phototoxicity, yet most implementations are limited to objective lenses with low numerical aperture and particular sample geometries that are built for specific biological systems. To overcome these limitations, we developed a single-objective light sheet fluorescence system for biological imaging based on axial plane optical microscopy and digital confocal slit detection, using either Bessel or Gaussian beam shapes. Compared to spinning disk confocal microscopy, this system displays similar optical resolution, but a significantly reduced photobleaching at the same signal level. This single-objective light sheet technique is built as an add-on module for standard research microscopes and the technique is compatible with high-numerical aperture oil immersion objectives and standard samples mounted on coverslips. We demonstrate the performance of this technique by imaging three-dimensional dynamic processes, including bacterial biofilm dispersal, the response of biofilms to osmotic shocks, and macrophage phagocytosis of bacterial cells.The three-dimensional (3D) tumor spheroid model is a critical tool for high-throughput ovarian cancer research and anticancer drug development in vitro. However, the 3D structure prevents high-resolution imaging of the inner side of the spheroids. We aim to visualize and characterize 3D morphological and physiological information of the contact multicellular ovarian tumor spheroids growing over time. We intend to further evaluate the distinctive evolutions of the tumor spheroid and necrotic tissue volumes in different cell numbers and determine the most appropriate mathematical model for fitting the growth of tumor spheroids and necrotic tissues. A label-free and noninvasive swept-source optical coherence tomography (SS-OCT) imaging platform was applied to obtain two-dimensional (2D) and 3D morphologies of ovarian tumor spheroids over 18 days. Ovarian tumor spheroids of two different initial cell numbers (5,000- and 50,000- cells) were cultured and imaged (each day) over the time of growth in 18 days. Four ma in vitro and aiding in drug development.Two theoretical sinusoidal diffractive profile models to build up a trifocal intraocular lens (IOL) are analysed. Topographic features of the diffractive zones such as their shape, step height and radii, as well as the energy efficiency (EE) of the foci, depends on the particular model, and are compared to the ones experimentally measured in a trifocal lens that claims to be designed with a generic sinusoidal diffractive profile the Acriva Trinova IOL (VSY Biotechnology, The Netherlands). The topography of the IOL is measured by confocal microscopy. The EE is experimentally obtained through-focus with the IOL placed in a model eye. The experimental results match very accurately with one of the theoretical models, the optimum triplicator, once that a spatial shift in the sinusoidal profile is introduced in the model.Full-wave models of OCT image formation, which are based on Maxwell's equations, are highly realistic. However, such models incur a high computational cost, particularly when modelling sample volumes consistent with those encountered in practice. Here, we present an approximate means of synthesizing volumetric image formation to reduce this computational burden. Instead of performing a full-wave scattered light calculation for each A-scan, we perform a full-wave scattered light calculation for a normally incident plane wave only. We use the angular spectrum field representation to implement beam focussing and scanning, making use of an assumption similar to the tilt optical memory effect, to approximately synthesize volumetric data sets. Our approach leads to an order of magnitude reduction in the computation time required to simulate typical B-scans. We evaluate this method by comparing rigorously and approximately evaluated point spread functions and images of highly scattering structured samples for a typical OCT system. Our approach also reveals new insights into image formation in OCT.In translation from preclinical to clinical studies using photoacoustic imaging, motion artifacts represent a major issue. In this study the feasibility of an in-house algorithm, referred to as intensity phase tracking (IPT), for regional motion correction of in vivo human photoacoustic (PA) images was demonstrated. The algorithm converts intensity to phase-information and performs 2D phase-tracking on interleaved ultrasound images. The radial artery in eight healthy volunteers was imaged using an ultra-high frequency photoacoustic system. PA images were motion corrected and evaluated based on PA image similarities. Both controlled measurements using a computerized stepping motor and free-hand measurements were evaluated. The results of the controlled measurements show that the tracking corresponded to 97 ± 6% of the actual movement. Overall, the mean square error between PA images decreased by 52 ± 15% and by 43 ± 19% when correcting for controlled- and free-hand induced motions, respectively. The results show that the proposed algorithm could be used for motion correction in photoacoustic imaging in humans.Stretch marks or striae distensae (SD) cause emotional distress and negatively affect the psychological well-being of patients. We investigate and compare two methods for quantifying the severity of SD visual scoring of images captured using a clinical visible-light dermatological camera (C-Cube, Pixience Inc) and measuring the local birefringence of skin using polarization-sensitive optical coherence tomography (PS-OCT). Data on skin visually affected by SD and visually normal skin were collected from 19 human volunteers. JAK assay Our results show a weak correlation between visual scores of the C-Cube images and the birefringence values obtained from the PS-OCT system. SD datasets have a significantly larger birefringence values compared to visually normal datasets.The purpose of this work is to study the dynamics of the accommodative response as a function of the subject's refractive error, as a first step in determining whether an anomalous accommodative function could affect emmetropization or trigger myopia progression. A secondary goal was to establish potential relationships between the speed of accommodation and other parameters in the accommodation process. Parameters related to the speed and amplitude of accommodation, convergence, miosis, and change in high-order aberrations were measured during the accommodative process for 2.8 D demand in 18 young healthy subjects (mean age 25.0 ± 4.7 years) with a range of refractive errors between 0 and -7.5 D (spherical equivalent). Measurements were performed in real time (25 Hz) with an open-view binocular Hartmann-Shack (HS) sensor using a GPU-based processing unit. Correlation coefficients were calculated between refractive error and each computed variable. Additionally, the speed of accommodation was correlated with all the other parameters in the study.
Here's my website: https://www.selleckchem.com/JAK.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.