Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In contrast, high LTCC-mediated Ca2+ loads led to a switch in ATP synthase activity to reverse-mode operation. This effect, which required nitric oxide, helped to prevent mitochondrial depolarization and sustained increases in mitochondrial Ca2+ Our findings indicate a complex role of LTCC-mediated Ca2+ influx in the tuning and maintenance of mitochondrial function. Therefore, the use of LTCC inhibitors to protect neurons from neurodegeneration should be reconsidered carefully. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.The amnion is remodeled during pregnancy to protect the growing fetus it contains, and it is particularly dynamic just before and during labor. By combining ultrastructural, immunohistochemical, and Western blotting analyses, we found that human and mouse amnion membranes during labor were subject to epithelial-to-mesenchymal transition (EMT), mediated, in part, by the p38 mitogen-activated protein kinase (MAPK) pathway responding to oxidative stress. Primary human amnion epithelial cell cultures established from amnion membranes from nonlaboring, cesarean section deliveries exhibited EMT after exposure to oxidative stress, and the pregnancy maintenance hormone progesterone (P4) reversed this process. Oxidative stress or transforming growth factor-β (TGF-β) stimulated EMT in a manner that depended on TGF-β-activated kinase 1 binding protein 1 (TAB1) and p38 MAPK. P4 stimulated the reverse transition, MET, in primary human amnion mesenchymal cells (AMCs) through progesterone receptor membrane component 2 (PGRMC2) and c-MYC. Our results indicate that amnion membrane cells dynamically transition between epithelial and mesenchymal states to maintain amnion integrity and repair membrane damage, as well as in response to inflammation and mechanical damage to protect the fetus until parturition. An irreversible EMT and the accumulation of AMCs characterize the amnion membranes at parturition. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.The cell envelope of Gram-positive bacteria generally comprises two types of polyanionic polymers, linked to either peptidoglycan, wall teichoic acids (WTAs), or to membrane glycolipids, lipoteichoic acids (LTAs). In some bacteria, including Bacillus subtilis strain 168, both WTA and LTA are glycerolphosphate polymers, yet are synthesized through different pathways and have distinct, but incompletely understood morphogenetic functions during cell elongation and division. We show here that the exo-lytic sn-glycerol-3-phosphodiesterase GlpQ can discriminate between B. subtilis WTA and LTA. GlpQ completely degraded unsubstituted WTA, i.e. that lacks substituents at the glycerol residues, by sequentially removing glycerolphosphates from the free end of the polymer up to the peptidoglycan linker. In contrast, GlpQ could not to degrade unsubstituted LTA, unless they were partially pre-cleaved, thereby allowing access of GlpQ to the other end of the polymer, which in the intact molecule is protected by a connection to the lipid anchor. Differences in stereochemistry between WTA and LTA have previously been suggested on the basis of differences in their biosynthetic precursors and chemical degradation products. The differential cleavage of WTA and LTA by GlpQ reported here represents the first direct evidence that they are enantiomeric polymers WTA is made of sn-glycerol-3-phosphate and LTA is made of sn-glycerol-1-phosphate. Their distinct stereochemistries reflect the dissimilar physiological and immunogenic properties of WTA and LTA. It also enables differential degradation of the two polymers within the same envelope compartment in vivo, particularly under phosphate-limiting conditions, when B. subtilis specifically degrades WTAs and replaces them by phosphate-free teichuronic acids. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Available assays for measuring cellular manganese (Mn) levels require cell lysis, restricting longitudinal experiments and multiplexed outcome measures. Conducting a screen of small molecules known to alter cellular Mn levels, we report here that one of these chemicals induces rapid Mn efflux. We describe this activity and the development and implementation of an assay centered on this small molecule, named manganese-extracting small molecule (MESM). Using inductively coupled plasma (ICP)-MS, we validated that this assay, termed here "manganese-extracting small molecule estimation route" (MESMER), can accurately assess Mn in mammalian cells. Furthermore, we found evidence that MESM acts as a Mn-selective ionophore and observed that it has increased rates of Mn membrane transport, reduced cytotoxicity, and increased selectivity for Mn over calcium compared with two established Mn ionophores, calcimycin (A23187) and ionomycin. Lastly, we applied MESMER to test whether prior Mn exposures subsequently affect cellular Mn levels. We found that cells receiving continuous, elevated extracellular Mn accumulate less Mn than cells receiving equally elevated Mn for the first time for 24 h, indicating a compensatory cellular homeostatic response. Use of the MESMER assay versus a comparable detergent lysis-based assay, cellular Fura-2 Mn extraction assay (CFMEA), reduced the number of cells and materials required for performing a similar but cell lethality-based experiment to 25% of the normally required sample size. We conclude that MESMER can accurately quantify cellular Mn levels in two independent cells lines through an ionophore-based mechanism, maintaining cell viability and enabling longitudinal assessment within the same cultures. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known if the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance (SPR), tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG, and related ERG and ELK channels, and places the PAS domain as a new target for drug discovery in EAG and related channels. Upregulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises a possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.The stringent response (SR) is a highly conserved stress response in bacteria. It is composed of two factors, (i) a nucleotide alarmone, guanosine tetra- and pentaphosphate ((p)ppGpp), and (ii) an RNA polymerase-binding protein, DksA, that regulates various phenotypes including bacterial virulence. The clinically significant opportunistic bacterial pathogen Pseudomonas aeruginosa possesses two genes, dksA1 and dksA2, that encode DksA proteins. It remains elusive, however, which of these two genes plays a more important role in SR regulation. In this work, we compared genome-wide, RNASeq-based transcriptome profiles of ΔdksA1, ΔdksA2, and ΔdksA1ΔdksA2 mutants to globally assess the effects of these gene deletions on transcript levels coupled with phenotypic analyses. The ΔdksA1 mutant exhibited substantial defects in a wide range of phenotypes, including quorum sensing (QS), anaerobiosis, and motility, whereas the ΔdksA2 mutant exhibited no significant phenotypic changes, suggesting that the dksA2 gene may not have an essential function in P. aeruginosa under the conditions used here. Of note, the ΔdksA1 mutants displayed substantially increased transcription of genes involved in polyamine biosynthesis, and we also detected increased polyamine levels in these mutants. Since SAM is a shared precursor for the production of both QS autoinducers and polyamines, these findings suggest that DksA1 deficiency skews the flow of SAM toward polyamine production rather than to QS signaling. Together, our results indicate that DksA1, but not DksA2, controls many important phenotypes in P. aeruginosa. learn more We conclude that DksA1 may represent a potential target whose inhibition may help manage recalcitrant P. aeruginosa infections. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.The hormone leptin regulates fat storage and metabolism by signaling through the brain and peripheral tissues. Lipids delivered to peripheral tissues originate mostly from the intestine and liver via synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. An intracellular chaperone, microsomal triglyceride transfer protein (MTP), is required for the biosynthesis of these lipoproteins, and its regulation determines fat mobilization to different tissues. Using cell culture and animal models, here we sought to identify the effects of leptin on MTP expression in the intestine and liver. Leptin decreased MTP expression in differentiated intestinal Caco-2 cells, but increased expression in hepatic Huh7 cells. Similarly, acute and chronic leptin treatment of chow diet-fed wildtype mice decreased MTP expression in the intestine, increased it in the liver, and lowered plasma triglyceride levels. These leptin effects required the presence of leptin receptors (LEPRs). Further experiments also suggested that leptin interacts with long-form LEPR (ObRb), highly expressed in the intestine, to down-regulate MTP. In contrast, in the liver, leptin interacted with short-form LEPR (ObRa) to increase MTP expression. Mechanistic experiments disclosed that leptin activates signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase (MAPK) signaling pathways in intestinal and hepatic cells, respectively, and thereby regulates divergent MTP expression. Our results also indicate that leptin-mediated MTP regulation in the intestine affects plasma lipid levels. In summary, our findings suggest that leptin regulates MTP expression differentially by engaging with different LEPR types and activating distinct signaling pathways in intestinal and hepatic cells. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Here's my website: https://www.selleckchem.com/products/s63845.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team