Notes
![]() ![]() Notes - notes.io |
The discussion takes into account patient participation and nurse competencies required to safeguard PRN medication practice, providing a background for further research on how to improve the safety of PRN medicines management in clinical practice.Multiple-unit pellet systems (MUPS) offer many advantages over conventional solid dosage forms both for the manufacturers and patients. Coated pellets can be efficiently compressed into MUPS in classic tableting process and enable controlled release of active pharmaceutical ingredient (APIs). For patients MUPS are divisible without affecting drug release and convenient to swallow. However, maintaining API release profile during the compression process can be a challenge. The aim of this work was to explore and discover relationships between data describing composition, properties, process parameters (condition attributes) and quality (decision attribute, expressed as similarity factor f2) of MUPS containing pellets with verapamil hydrochloride as API, by applying a dominance-based rough ret approach (DRSA) mathematical data mining technique. DRSA generated decision rules representing cause-effect relationships between condition attributes and decision attribute. Similar API release profiles from pellets before and after tableting can be ensured by proper polymer coating (Eudragit® NE, absence of ethyl cellulose), compression force higher than 6 kN, microcrystalline cellulose (Avicel® 102) as excipient and tablet hardness ≥42.4 N. DRSA can be useful for analysis of complex technological data. Decision rules with high values of confirmation measures can help technologist in optimal formulation development.The Conceptual Model Map (CMM) presented here is intended to show the connections between different theories and constructs in the field of health and nutrition behavior (including literacy models, the knowledge-attitude(s)-practice(s) survey structure (KAP), behavior change theories, and Maslow's pyramid of needs). The CMM can be used as a map to locate existing and future studies, to show their range of effect as well as their limitations. In this context, the CMM also reveals reasons for the attitude/intention-behavior gap.The application of the Three-Dimensional Ultra-Short Echo Time (3D UTE) pulse sequence at a high magnetic field for visualization of the distribution of 19F loaded theranostic core-shell nanocapsules with Nafion® (1,1,2,2-tetrafluoroethene; 1,1,2,2-tetrafluoro-2- [1,1,1,2,3,3-hexafluoro-3-(1,2,2-trifluoroethenoxy)propan-2-yl] oxyethanesulfonic acid) incorporated into the shell is presented. The nanocarriers were formed via the layer-by-layer technique with biodegradable polyelectrolytes PLL (Poly-L-lysine), and with Nafion® polymer with high 19F content. Before imaging, an MR (magnetic resonance) spectroscopy and T1 and T2 measurements were performed, resulting in values of T2 between 1.3 ms and 3.0 ms, depending on the spectral line. Selleck PP2 To overcome limitations due to such short T2, the 3D UTE pulse sequence was applied for 19F MR imaging. First Nafion® solutions of various concentrations were measured to check the detection limit of our system for the investigated molecule. Next, the imaging of a phantom containing core-shell nanocapsules was performed to assess the possibility of visualizing their distribution in the samples. Images of Nafion® containing samples with SNR ≥ 5 with acquisition time below 30 minutes for 19F concentration as low as 1.53·10-2 mmol 19F/g of sample, were obtained. This is comparable with the results obtained for molecules, which exhibit more preferable MR characteristics.We recently isolated a cardiac glycoside (CG), αldiginoside, from an indigenous plant in Taiwan, which exhibits potent tumor-suppressive efficacy in oral squamous cell carcinoma (OSCC) cell lines (SCC2095 and SCC4, IC50 less then 0.2 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays). Here, we report that αldiginoside caused Sphase arrest and apoptosis, through the inhibition of a series of signaling pathways, including those mediated by cyclin E, phospho-CDC25C (p-CDC25C), and janus kinase/signal transducer and activator of transcription (JAK/STAT)3. αldiginoside induced apoptosis, as indicated by caspase activation and poly (ADP-ribose) polymerase (PARP) cleavage. Equally important, αldiginoside reduced Mcl-1 expression through protein degradation, and overexpression of Mcl-1 partially protected SCC2095 cells from αldiginoside's cytotoxicity. Taken together, these data suggest the translational potential of αldiginoside to foster new therapeutic strategies for OSCC treatment.In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. The main challenges in the formulation and inhalation devices are discussed, together with the possible strategies that can be applied to address these challenges. Current clinical developments in inhaled biological drugs for both local and systemic applications are also discussed to provide an insight for further research.Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.Mānuka oil is an essential oil derived from Leptospermum scoparium, a plant that has been used by the indigenous populations of New Zealand and Australia for centuries. Both the extracted oil and its individual components have been associated with various medicinal properties. Given the rise in resistance to conventional antibiotics, natural products have been targeted for the development of antimicrobials with novel mechanism of action. This review aimed to collate available evidence on the antimicrobial, anti-parasitic and anti-inflammatory activities of mānuka oil and its components. A comprehensive literature search of was conducted using PubMed and Embase (via Scopus) targeting articles from database inception until June 2020. link2 Chemical structures and IUPAC names were sourced from PubChem. Unpublished information from grey literature databases, Google search, targeted websites and Google Patents were also included. The present review found extensive in vitro data supporting the antimicrobial effects of mānuka oil warrants further clinical studies to establish its therapeutic potential. Clinical evidence on its efficacy, safety and dosing guidelines are necessary for its implementation for medical purposes. Further work on regulation, standardization and characterization of the medicinal properties of mānuka oil is required for establishing consistent efficacy of the product.Lightweight mortar extrusion enables the production of monolithic exterior wall components with improved thermal insulation by installing air chambers and reduced material demand compared to conventional construction techniques. However, without reinforcement, the systems are not capable of bearing high flexural forces and, thus, the application possibilities are limited. Furthermore, the layer bonding is a weak spot in the system. We investigate a reinforcement strategy combining fibers in the mortar matrix with vertically inserted elements to compensate the layer bonding. By implementing fibers in the extruded matrix, the flexural strength can be increased almost threefold parallel to the layers. However, there is still an anisotropy between the layers as fibers are oriented during deposition and the layer bond is still mainly depending on hydration processes. This can be compensated by the vertical insertion of reinforcement elements in the freshly deposited layers. Corrugated wire fibers as well as short steel reinforcement elements were suitable to increase the flexural strength between the layers. As shown, the potential increase in flexural strength could be of a factor six compared to the reference (12 N/mm2 instead of 1.9 N/mm2). Thus, the presented methods reduce anisotropy in flexural strength due to layered production.The incorporation of graphene nanoplatelets (GnPs) within a polymer matrix can play an important role in the physical properties and the functionality of the composite material. Composites consisting of low-density polyethylene (LDPE) and GnPs of different concentrations were developed by mixing GnPs with a molten form of the polymeric matrix. The effect of the GnPs content on the morphological, structural, and electrical properties of the composites were investigated. As shown, graphene presence and its concentration significantly modified the polymer matrix properties, a behavior that can be employed for tailoring its applicability in electrical applications. link3 It was found that the increase of the graphene platelets concentration seems to promote the formation of graphene agglomerates, air gaps, and inhomogeneities, while higher dielectric constant/lower dielectric losses can be achieved.We demonstrate a compact all-fiber oxygen sensor using photothermal interferometry with a short length (4.3 cm) of hollow-core negative curvature fibers. The hollow-core fiber has double transmission windows covering both visible and near-infrared wavelength regions. Absorption of a pump laser beam at 760 nm produces photothermal phase modulation and a probe Fabry-Perot interferometer operating at 1550 nm is used to detect the phase modulation. With wavelength modulation and first harmonic detection, a limit of detection down to 54 parts per million (ppm) with a 600-s averaging time is achieved, corresponding to a normalized equivalent absorption of 7.7 × 10-8 cm-1. The oxygen sensor has great potential for in situ detection applications.
My Website: https://www.selleckchem.com/products/pp2.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team