Notes
Notes - notes.io |
The defect or functional deficiency of lysosomal TRPML1 channels has been shown to critically contribute to the initiation and development of some chronic degeneration or diseases in the cardiovascular system or kidneys. Here we briefly summarize the current evidence demonstrating the regulation of lysosomal TRPML1 channel activity and related signaling mechanisms. We also provide some insights into the canonical and noncanonical roles of TRPML1 channel dysfunction as a potential pathogenic mechanism for certain cardiovascular and kidney diseases and associated therapeutic strategies.Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that is intensively expressed in the peripheral nerve system and involved in a variety of physiological and pathophysiological processes in mammals. Its activity is of great significance in transmitting pain or itch signals from peripheral sensory neurons to the central nervous system. The alteration or hypersensitivity of TRPV1 channel is well evidenced under various pathological conditions. Moreover, accumulative studies have revealed that TRPV1-expressing (TRPV1+) sensory neurons mediate the neuroimmune crosstalk by releasing neuropeptides to innervated tissues as well as immune cells. In the central projection, TRPV1+ terminals synapse with the secondary neurons for the transmission of pain and itch signalling. The intense involvement of TRPV1 and TRPV1+ neurons in pain and itch makes it a potential pharmaceutical target. Over decades, the basis of TRPV1 channel structure, the nature of its activity, and its modulation in pathological processes have been broadly studied and well documented. Herein, we highlight the role of TRPV1 and its associated neurons in sensing pain and itch. The fundamental understandings of TRPV1-involved nociception, pruriception, neurogenic inflammation, and cell-specific modulation will help bring out more effective strategies of TRPV1 modulation in treating pain- and itch-related diseases.Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.In the nervous system, the concentration of Cl- in neurons that express GABA receptors plays a key role in establishing whether these neurons are excitatory, mostly during early development, or inhibitory. Thus, much attention has been dedicated to understanding how neurons regulate their intracellular Cl- concentration. However, regulation of the extracellular Cl- concentration by other cells of the nervous system, including glia and microglia, is as important because it ultimately affects the Cl- equilibrium potential across the neuronal plasma membrane. Moreover, Cl- ions are transported in and out of the cell, via either passive or active transporter systems, as counter ions for K+ whose concentration in the extracellular environment of the nervous system is tightly regulated because it directly affects neuronal excitability. In this book chapter, we report on the Cl- channel types expressed in the various types of glial cells focusing on the role they play in the function of the nervous system in health and disease. Furthermore, we describe the types of stimuli that these channels are activated by, the other solutes that they may transport, and the involvement of these channels in processes such as pH regulation and Regulatory Volume Decrease (RVD). The picture that emerges is one of the glial cells expressing a variety of Cl- channels, encoded by members of different gene families, involved both in short- and long-term regulation of the nervous system function. Finally, we report data on invertebrate model organisms, such as C. elegans and Drosophila, that are revealing important and previously unsuspected functions of some of these channels in the context of living and behaving animals.DEG/ENaC channels are voltage-independent Na+/Ca2+ channels that are conserved across species and are expressed in many different cell types and tissues, where they contribute to a wide array of physiological functions from transepithelial Na+ transport, to sensory perception, and learning and memory. In this chapter, we focus on the members of this family that are expressed in the nervous system, grouping them based on their function. Structurally, DEG/ENaC channels are trimers formed by either identical or homologous subunits, each one protruding from the plasma membrane like a clenched hand. Crystallographic studies on chicken ASIC1a in the closed, inactivated, and open states revealed important details about the gating and permeation properties of these channels, and overall they show that the extracellular domain of the channel undergoes large conformational changes during gating. The vast majority of the channel's extracellular domain is conserved across different members and species; however, key changion. These data place DEG/ENaC channels in an excellent position for being considered as drug targets for the treatment of several neurological conditions and disorders from pain to epilepsy and ischemia.Our understanding of the gaseous signaling molecules that play important roles in diverse physiological processes keeps expanding. These gas molecules, also called gasotransmitters, include NO, H2S, 1O2, CO, and CO2 and are generated within the cell through enzymatic pathways and photochemical reactions. These molecules are chemically unstable and directly react with amino acids such as cysteine, histidine, and so on. Compared to well-characterized reactive oxygen species (ROS), including H2O2, ONOO-, O2-, and OH·, the gasotransmitters are in general less polar and show higher solubility in hydrophobic environments like the lipid membrane. Correspondingly, accumulating evidence has begun to unveil the broad impacts of these gaseous molecules on the function of membrane proteins, including ion channels. This review summarizes the major physicochemical characteristics of representative gasotransmitters and their regulation of ion channel functions.In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.The TMEM16 protein family comprises two novel classes of structurally conserved but functionally distinct membrane transporters that function as Ca2+-dependent Cl- channels (CaCCs) or dual functional Ca2+-dependent ion channels and phospholipid scramblases. Extensive functional and structural studies have advanced our understanding of TMEM16 molecular mechanisms and physiological functions. TMEM16A and TMEM16B CaCCs control transepithelial fluid transport, smooth muscle contraction, and neuronal excitability, whereas TMEM16 phospholipid scramblases mediate the flip-flop of phospholipids across the membrane to allow phosphatidylserine externalization, which is essential in a plethora of important processes such as blood coagulation, bone development, and viral and cell fusion. In this chapter, we summarize the major methods in studying TMEM16 ion channels and scramblases and then focus on the current mechanistic understanding of TMEM16 Ca2+- and voltage-dependent channel gating as well as their ion and phospholipid permeation.Calcium ions serve as an important intracellular messenger in many diverse pathways, ranging from excitation coupling in muscles to neurotransmitter release in neurons. https://www.selleckchem.com/products/pf-07265807.html Physiologically, the concentration of free intracellular Ca2+ is up to 10,000 times less than that of the extracellular concentration, and increases of 10- to 100-fold in intracellular Ca2+ are observed during signaling events. Voltage-gated calcium channels (VGCCs) located on the plasma membrane serve as one of the main ways in which Ca2+ is able to enter the cell. Given that Ca2+ functions as a ubiquitous intracellular messenger, it is imperative that VGCCs are under tight regulation to ensure that intracellular Ca2+ concentration remains within the physiological range. In this chapter, we explore VGCCs' inherent control of Ca2+ entry as well as the effects of alternative splicing in CaV2.1 and posttranslational modifications of CaV1.2/CaV1.3 such as phosphorylation and ubiquitination. Deviation from this physiological range will result in deleterious effects known as calcium channelopathies, some of which will be explored in this chapter.K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Homepage: https://www.selleckchem.com/products/pf-07265807.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team