Notes
Notes - notes.io |
To describe and assess the impact of polypharmacy, and its potential adverse reactions; serious clinically relevant drug-drug interactions (DDIs) and inappropriate medicines (PIMs) on glycemic target, and kidney function in a sample of older adults with type 2 diabetes (T2D).
Cross-sectional study was performed in a real-world database including 444 elderly people with T2D from the Portuguese Diabetes Association, aged ≥ 65 years, and registered in 2018. DDIs were analyzed using Micromedex drug-interaction platform and PIMs identified using STOPP criteria version-2.
Polypharmacy was identified in 43.6% of patients. This group of patients has shown to be more females (50 vs. Selleck Tepotinib 39.6%, P=0.0208), higher HbA1c targets (P=0.0275), longer diabetes duration (66.4 vs. 54.4%, P=0.0019), more hypertensive (87 vs. 62.9%, P<0.0001), using more insulin (38.1 vs. 26%, P=0.0062), sulfonylureas (37.1 vs. 15.6%, P<0.0001), GLP-1 receptor-agonists (9.7 vs. 3.6%, P=0.0077), metformin-DPP-4 inhibitors (41.2 vs. 29.2%, P=0.0081), and SGLT2 inhibitors (19 vs. 9.6%, P=0.0040). A total of 8.7% of patients had potentially serious clinically relevant DDIs, mainly due to interacting medicine pairs dexamethasone and fluoroquinolones. Furthermore, 23.4% had PIMs, and cardiovascular medicines accounted for largest therapeutic group associated. Polypharmacy found to be associated with twofold greater odds of having HbA1c ≤8%, whereas PIMs associated with 2.5-fold greater odds of having HbA1c ≤9%, and 5.5-folds greater odds of having severe kidney function.
These findings suggested that there is a potential association between polypharmacy and PIMs and altered glycemic control, and PIMs with the deterioration of kidney function.
These findings suggested that there is a potential association between polypharmacy and PIMs and altered glycemic control, and PIMs with the deterioration of kidney function.Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity, and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF], and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass, and enzyme activities were strongly affected by vegetation restoration, and soil bacterial and fungal communities were significantly different from each other at the sites. Correlation analysis showed that LB and FRB were significantly positively correlated with the Chao index of soil bacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota, and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH, and nutrients have important effects on the bacterial and fungal diversities, as well as Acidobacteria, Proteobacteria, Actinobacteria, Nitrospirae, Zygomycota, and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities, and the composition and diversity of soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.The ATPase cation transporting 13A2 protein (ATP13A2), which maintains the homeostasis of mitochondria and lysosomes, plays a significant role in human neurodegenerative diseases and cancer. Through constructing a lamprey proteome database, employing multiple sequence alignment and phylogenetic analysis, 5 ATP13A2 proteins from Petromyzon marinus (Pm-ATP13A2) were identified based on the evolutionary perspective. The motif and domain analysis showed that the ATP13A2 protein was conserved. The multiple phosphorylation sites and transmembrane structures highlighted the characteristics of ATP13A2 as the P-ATPase-V cation transporting protein. Based on the information provided by the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, this study was conducted as a preliminary investigation of the carcinogenic effects of the ATP13A2 gene in a variety of tumors. The ATP13A2 was strongly expressed in most tumors, except in two types of nervous system tumors glioblastoma multiforme (GBM) and brain lower grade glioma (LGG). Moreover, the expression of ATP13A2 was strongly correlated with the prognosis of tumor patients. The high expression of ATP13A2 was obviously related to the poor prognosis of LGG. The poor prognosis of LGG patients may affect the ATP13A2 expression through the immune cells and radiotherapy. Also, cancer-related fibroblast infiltration was observed. All in all, this work offers more insights into the molecular evolution of the ATP13A2 protein and facilitates the understanding of the carcinogenic effects of the ATP13A2 in different tumors. Our discussion also promotes the study into the successful evolution of the vertebrate brain and the mechanism of clinical brain-related diseases.Plasma triglyceride-rich lipoproteins (TRL), particularly atherogenic remnant lipoproteins, contribute to atherosclerotic cardiovascular disease (ASCVD). Hypertriglyceridemia may arise in part from hypersecretion of TRLs by the liver and intestine. Here we focus on the complex network of hormonal, nutritional, and neuronal interorgan communication that regulates secretion of TRLs, and provide our perspective on the relative importance of these factors. Hormones and peptides originating from the pancreas (insulin, glucagon), gut (GLP-1, GLP-2, ghrelin, CCK, peptide YY), adipose tissue (leptin, adiponectin) and brain (GLP-1) modulate TRL secretion by receptor-mediated responses and indirectly via neural networks. In addition, the gut microbiome and bile acids influence lipoprotein secretion in humans and animal models. Several nutritional factors modulate hepatic lipoprotein secretion through effects on the central nervous system. Vagal afferent signalling from the gut to the brain and efferent signals from the brain to the liver and gut are modulated by hormonal and nutritional factors to influence TRL secretion.
Read More: https://www.selleckchem.com/products/emd-1214063.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team