Notes
![]() ![]() Notes - notes.io |
The shell thickness was tuned from 9.8 to 29.5 nm by simply varying the silver-ion concentration. A key factor was the amount of added PEI because excess PEI would result in the formation of silver nanoparticles in the bulk solution phase, while too little PEI would produce incomplete shells. The optimum mass ratio of PEI-to-silica particles was determined to be 1.0 for the experimental conditions in this study. The mixing sequence of the reaction solutions was also important because PEI had to be mixed with silica particles first to ensure that the PEI molecules get adsorbed on the surface of silica and accommodated silver ions via the coordination interactions between the amine groups of the PEI molecules and silver ions. The reaction that involves the use of PEI could lead to establishing a simple and robust synthesis technique for silver nanoshells.Recent investigations of III-V semiconductor nanowires have revealed periodic zinc-blende twins, known as twinning superlattices, that are often induced by a high-impurity dopant concentration. In the present study, the relationship between the nanowire morphology, crystal structure, and impurity dopant concentration (Te and Be) of twinning superlattices has been studied in GaAs nanowires grown by molecular beam epitaxy using the self-assisted (with a Ga droplet) vapor-liquid-solid process. The contact angle between the Ga droplet and the nanowire top facet decreased linearly with the dopant concentration, whereas the period of the twinning superlattices increased with the doping concentration and was proportional to the nanowire radius. Our model, which is based entirely on surface energetics, is able to explain a unified formation mechanism of twinning superlattices in doped semiconductor nanowires.A series of novel sulfur-containing cycliclipopeptides named thioamycolamides A-E, with thiazoline, thioether rings, and fatty acid moieties, were identified from the culture broth of the rare actinomycete Amycolatopsis sp. 26-4. The planar structural elucidation was accomplished by HRMS and 1D/2D NMR spectroscopic data analyses. The absolute configurations were unambiguously determined by Marfey's method, CD spectroscopy, and synthesis of partial structures. Moreover, their growth inhibitory activities against human tumor cell lines were investigated.The spatiotemporal organization of complex fluids under flow can be strongly affected by incorporating solid particles. Here, we report that a monolayer of interfacially active microspheres preferentially wetted by the matrix phase can bridge droplets into vorticity-aligned bands in immiscible polymer blends at intermediate particle concentrations and low shear rates. Strong particle bridging ability and the formation of rigid anisotropic droplet bands with a negligible inertia effect in the Newtonian matrix are suggested to be responsible for the vorticity orientation of droplet bands during slow shear flow, which could be understood based on Jeffery orbit theory in the framework of fluid mechanics and strong confinement effect acted by shear walls and adjacent bands. However, increasing the aspect ratio of particles could restrain the formation of anisotropic bands because of reduced particle coverage and promoted droplet coalescence induced by sharp particle corners, increased and uneven distribution of particle aggregates in the matrix phase, and weakened particle bridging ability.The increases in refractive indices (n) of materials are crucial for transformative optical technologies. With the progress of monolithic lithography, large advances have been achieved with several semiconductors, including silicon, germanium, and gallium arsenide, which generally provide higher n of ∼4.0 compared to those of other elements. Nevertheless, above this upper limit of naturally available n, the range of light-matter interactions could be unprecedentedly expanded, which in turn enriches the possible applications. Here, we present a soft self-assembly of polyhedral Au colloids as a promising method to achieve unnaturally high n values. The interfacial assembly of Au nanocubes provides n of 6.4 at the resonant wavelength (near-infrared) and 4.5 in the off-resonant regimes (mid-infrared), which have not been previously reached. The soft self-assembly of polyhedral Au colloids can be a versatile and highly effective route for the fabrication of optical metamaterials with unnaturally high n values.A selenacalix[4]selenophene derivative, a cyclic selenophene oligomer linked with divalent selenium atoms, was successfully synthesized via a one-pot cyclization reaction using 2,5-dibromo-3,4-bis(4-t-butylphenyl)selenophene and (Bu3Sn)2Se. The X-ray analysis revealed an annular geometry consisting of two sets of vertical and horizontal selenophene pairs. The observed geometry was preserved by intermolecular Se···Se and Se···π interactions, leading to a one-dimensional array. This self-assembled network results in a supramolecular gel, despite the absence of any hydrogen bonding sites.We developed an efficient and direct method for synthesis of benzothiophene oxides from 1-bromo-2-[2-(trimethylsilyl)ethynyl]benzenes and thionyl chloride as an easily accessible source of the sulfinyl group. Benzothiophenes were also synthesized selectively by simply increasing the amount of thionyl chloride. These methods achieved efficient syntheses of various benzothiophene oxides and benzothiophenes. The further modification of the benzothiophene oxides obtained was also demonstrated.The on-DNA synthesis of highly substituted cyclobutanes was achieved through a photocatalytic [2 + 2] cycloaddition reaction in aqueous solution. Readily available DNA-tagged styrene derivatives were reacted with structurally diverse cinnamates in the presence of an iridium-based photocatalyst, Ir(ppy)2(dtbbpy)PF6, to forge two new C(sp3)-C(sp3) bonds. This transformation was demonstrated to have excellent functional group tolerance and allowed for the facile installation of a variety of heteroaromatic substituents on a densely functionalized cyclobutane scaffold.Silicones are usually considered to be inert and, thus, not reactive with surfaces. Here we show that the most common silicone, methyl-terminated polydimethylsiloxane, spontaneously and stably bonds on glass-and any other material with silicon oxide surface chemistry-even at room temperature. As a result, a 2-5 nm thick and transparent coating, which shows extraordinary nonstick properties toward polar and nonpolar liquids, ice, and even super glue, is formed. Ten microliter drops of various liquids slide off a coated glass when the sample is inclined by less than 10°. Ice adhesion strength on a coated glass is only 2.7 ± 0.6 kPa, that is, more than 98% less than ice adhesion on an uncoated glass. The mechanically stable coating can be easily applied by painting, spraying, or roll-coating. see more Notably, the reaction does not require any excess energy or solvents, nor does it induce hazardous byproducts, which makes it an ideal option for environmentally sustainable surface modification in a myriad of technological applications.
Homepage: https://www.selleckchem.com/products/lys05.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team