Notes
![]() ![]() Notes - notes.io |
The Last Glacial Maximum (LGM), one of the best studied palaeoclimatic intervals, offers an excellent opportunity to investigate how the climate system responds to changes in greenhouse gases and the cryosphere. Previous work has sought to constrain the magnitude and pattern of glacial cooling from palaeothermometers1,2, but the uneven distribution of the proxies, as well as their uncertainties, has challenged the construction of a full-field view of the LGM climate state. Here we combine a large collection of geochemical proxies for sea surface temperature with an isotope-enabled climate model ensemble to produce a field reconstruction of LGM temperatures using data assimilation. The reconstruction is validated with withheld proxies as well as independent ice core and speleothem δ18O measurements. Our assimilated product provides a constraint on global mean LGM cooling of -6.1 degrees Celsius (95 per cent confidence interval -6.5 to -5.7 degrees Celsius). Given assumptions concerning the radiative forcing of greenhouse gases, ice sheets and mineral dust aerosols, this cooling translates to an equilibrium climate sensitivity of 3.4 degrees Celsius (2.4-4.5 degrees Celsius), a value that is higher than previous LGM-based estimates but consistent with the traditional consensus range of 2-4.5 degrees Celsius3,4.Fifty years of Moore's law scaling in microelectronics have brought remarkable opportunities for the rapidly evolving field of microscopic robotics1-5. Electronic, magnetic and optical systems now offer an unprecedented combination of complexity, small size and low cost6,7, and could be readily appropriated for robots that are smaller than the resolution limit of human vision (less than a hundred micrometres)8-11. However, a major roadblock exists there is no micrometre-scale actuator system that seamlessly integrates with semiconductor processing and responds to standard electronic control signals. Here we overcome this barrier by developing a new class of voltage-controllable electrochemical actuators that operate at low voltages (200 microvolts), low power (10 nanowatts) and are completely compatible with silicon processing. To demonstrate their potential, we develop lithographic fabrication-and-release protocols to prototype sub-hundred-micrometre walking robots. Every step in this process is performed in parallel, allowing us to produce over one million robots per four-inch wafer. These results are an important advance towards mass-manufactured, silicon-based, functional robots that are too small to be resolved by the naked eye.Atmospheric warming threatens to accelerate the retreat of the Antarctic Ice Sheet by increasing surface melting and facilitating 'hydrofracturing'1-7, where meltwater flows into and enlarges fractures, potentially triggering ice-shelf collapse3-5,8-10. The collapse of ice shelves that buttress11-13 the ice sheet accelerates ice flow and sea-level rise14-16. However, we do not know if and how much of the buttressing regions of Antarctica's ice shelves are vulnerable to hydrofracture if inundated with water. Here we provide two lines of evidence suggesting that many buttressing regions are vulnerable. First, we trained a deep convolutional neural network (DCNN) to map the surface expressions of fractures in satellite imagery across all Antarctic ice shelves. Second, we developed a stability diagram of fractures based on linear elastic fracture mechanics to predict where basal and dry surface fractures form under current stress conditions. We find close agreement between the theoretical prediction and the DCNN-mapped fractures, despite limitations associated with detecting fractures in satellite imagery. Finally, we used linear elastic fracture mechanics theory to predict where surface fractures would become unstable if filled with water. Many regions regularly inundated with meltwater today are resilient to hydrofracture-stresses are low enough that all water-filled fractures are stable. Conversely, 60 ± 10 per cent of ice shelves (by area) both buttress upstream ice and are vulnerable to hydrofracture if inundated with water. Eganelisib The DCNN map confirms the presence of fractures in these buttressing regions. Increased surface melting17 could trigger hydrofracturing if it leads to water inundating the widespread vulnerable regions we identify. These regions are where atmospheric warming may have the largest impact on ice-sheet mass balance.Stars form by accreting material from their surrounding disks. There is a consensus that matter flowing through the disk is channelled onto the stellar surface by the stellar magnetic field. This is thought to be strong enough to truncate the disk close to the corotation radius, at which the disk rotates at the same rate as the star. Spectro-interferometric studies in young stellar objects show that hydrogen emission (a well known tracer of accretion activity) mostly comes from a region a few milliarcseconds across, usually located within the dust sublimation radius1-3. The origin of the hydrogen emission could be the stellar magnetosphere, a rotating wind or a disk. In the case of intermediate-mass Herbig AeBe stars, the fact that Brackett γ (Brγ) emission is spatially resolved rules out the possibility that most of the emission comes from the magnetosphere4-6 because the weak magnetic fields (some tenths of a gauss) detected in these sources7,8 result in very compact magnetospheres. In the case of T Tauri sources, their larger magnetospheres should make them easier to resolve. The small angular size of the magnetosphere (a few tenths of a milliarcsecond), however, along with the presence of winds9,10 make the interpretation of the observations challenging. Here we report optical long-baseline interferometric observations that spatially resolve the inner disk of the T Tauri star TW Hydrae. We find that the near-infrared hydrogen emission comes from a region approximately 3.5 stellar radii across. This region is within the continuum dusty disk emitting region (7 stellar radii across) and also within the corotation radius, which is twice as big. This indicates that the hydrogen emission originates in the accretion columns (funnel flows of matter accreting onto the star), as expected in magnetospheric accretion models, rather than in a wind emitted at much larger distance (more than one astronomical unit).
Here's my website: https://www.selleckchem.com/products/ipi-549.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team