Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Melatonin is a multifunctional molecule and plays a crucial role in the regulation of circadian rhythms. The role of melatonin in the protection of the central nervous system is well documented. Therefore, melatonin was proposed as a possible therapeutic agent for reducing the severity of Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive decline and memory dysfunction. Recently, we showed beneficial neuroprotective effects of prophylactic supplementation with melatonin in a suitable model of sporadic AD OXYS rats, which exhibit disturbances in melatonin secretion. In the present study, we demonstrated that melatonin administration, when started at the age of active progression of AD-like pathology, decreased the amyloid-β1 - 42 and amyloid-β1 - 40 levels in the hippocampus and amyloid-β1 - 42 levels in the frontal cortex of OXYS rats. Furthermore, oral administration of melatonin slowed down degenerative alterations in hippocampal neurons of OXYS rats. The most noticeable improvement was observed in the CA1 region of the hippocampus. Melatonin administration prevented the decrease in the mitochondria-occupied portion of the neuronal volume and improved the ultrastructure of mitochondria in the neurons of the CA1 region. Additionally, melatonin treatment of OXYS rats slowed down an increase in anxiety and deterioration of reference memory. Thus, melatonin administration could alleviate the burden of AD and may be considered a promising pharmaceutical treatment of the disease.The impact of neuropathological lesions on the clinical symptoms and progression of Lewy body disease (LBD) remains unclear. To address this issue, we describe two illustrative cases of autopsy-proven LBD that presented atypical phenotypes of progressive supranuclear palsy syndrome and semantic dementia. Postmortem examination revealed diffuse LBD with massive brainstem involvement in case 1, whereas Lewy bodies predominated in the amygdala and neocortex in case 2. Alzheimer's disease pathology was present in both cases, and TDP-43 inclusions were noted in case 2. These cases illustrate two contrasted clinical presentations and highlight the heterogeneity within the underlying proteinopathies of neurodegenerative diseases.
Insulin-like growth factor (IGF)-1, through insulin/IGF-1 signaling pathway, is involved in the pathogenesis of type 2 diabetes mellitus (T2DM) and Alzheimer's disease.
This study aimed to assess the association of serum IGF-1 and IGF binding protein (IGFBP)-3 levels with cognition status and to determine whether IGF-1 rs972936 polymorphism is associated with T2DM with mild cognitive impairment (MCI).
A total of 150 T2DM patients, 75 satisfying the MCI diagnostic criteria and 75 exhibiting healthy cognition, were enrolled in this study. The cognitive function of the subjects was extensively assessed. Serum IGF-1 and IGFBP-3 levels were measured through enzyme-linked immunosorbent assay; IGF-1/IGFBP-3 molar ratio was calculated. Single nucleotide polymorphisms of the IGF-1-(rs972936) gene were analyzed.
Serum IGF-1/IGFBP-3 molar ratio in MCI patients was significantly lower than that in the control group (p = 0.003). Poly(vinyl alcohol) compound library chemical Significant negative correlations were found between IGF-1/IGFBP-3 molar ratio and Trail Making Test A and B (TMT-A and TMT-B) scores (p = 0.003; p < 0.001, respectively), which indicated executive function. Further multiple step-wise regression analysis revealed that the TMT-A or TMT-B score was significantly associated only with serum IGF-1/IGFBP-3 molar ratio (p = 0.016; p < 0.001, respectively). No significant difference was found in the genotype or allele distribution of IGF-1 rs972936 polymorphism between MCI and control groups.
A low serum IGF-1/IGFBP-3 molar ratio is associated with the pathogenesis of MCI, particularly executive function in T2DM populations. Further investigation with a large population size should be conducted to confirm this observed association.
A low serum IGF-1/IGFBP-3 molar ratio is associated with the pathogenesis of MCI, particularly executive function in T2DM populations. Further investigation with a large population size should be conducted to confirm this observed association.Intraneuronal accumulation and extracellular deposition of amyloid-β (Aβ) protein continues to be implicated in the pathogenesis of Alzheimer's disease (AD), be it familial in origin or sporadic in nature. Aβ is generated intracellularly following endocytosis of amyloid-β protein precursor (AβPP), and, consequently, factors that suppress AβPP internalization may decrease amyloidogenic processing of AβPP. Here we tested the hypothesis that caffeine decreases Aβ generation by suppressing AβPP internalization in primary cultured neurons. Caffeine concentration-dependently blocked low-density lipoprotein (LDL) cholesterol internalization and a specific adenosine A3 receptor (A3R) antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on neuronal internalization of LDL cholesterol. Further implicating A3Rs were findings that a specific A3R agonist increased neuronal internalization of LDL cholesterol. In addition, caffeine as well as siRNA knockdown of A3Rs blocked the ability of LDL cholesterol to increase Aβ levels. Furthermore, caffeine blocked LDL cholesterol-induced decreases in AβPP protein levels in neuronal plasma membranes, increased surface expression of AβPP on neurons, and the A3R antagonist as well as siRNA knockdown of A3Rs mimicked the effects of caffeine on AβPP surface expression. Moreover, the A3R agonist decreased neuronal surface expression of AβPP. Our findings suggest that caffeine exerts protective effects against amyloidogenic processing of AβPP at least in part by suppressing A3R-mediated internalization of AβPP.Here, we investigated the effect of escitalopram pretreatment on protein kinase A (PKA)-induced tau hyperphosphorylation and spatial memory deficits in rats using western blot and behavioral tests, respectively. We demonstrated that escitalopram effectively ameliorated tau hyperphosphorylation and the spatial memory deficits induced by PKA activation. We measured the total and activity-dependent Ser9-phosphorylated levels of glycogen synthase kinase (GSK)-3β in hippocampal extracts. No significant change in the total level of GSK-3β was observed between the different groups. However, compared with forskolin injection alone, pretreatment with escitalopram increased the level of Ser9-phosphorylated GSK-3β. We also demonstrated that escitalopram increased Akt phosphorylation at Ser473 (the active form of Akt). Furthermore, we identified other important kinases and phosphatases, such as protein phosphatase 2A, extracellular signal-regulated kinases 1 and 2, and MAP kinase kinase-1/2, that have previously been reported to play a crucial role in tau phosphorylation; however, we did not detect any significant change in the activation of these kinases or phosphatases in our study. We unexpectedly demonstrated that forskolin caused anxiety-like behavior in rats, and pretreatment with escitalopram did not significantly ameliorate the anxiety-like behavior induced by forskolin. These data provide the first evidence that escitalopram ameliorates forskolin-induced tau hyperphosphorylation and spatial memory impairment in rats; these effects do not occur via the anti-anxiety activity of escitalopram but may involve the Akt/GSK-3β signaling pathway.The pleiotropic contribution of statins on cognition is uncertain. From 840 patients in the cohort from the Israel Diabetes and Cognitive Decline Study, we identified 61 non-statin users and compared them with 45 patients who had used statins at least 90% of the time. Analysis of covariance was performed to compare mean cognitive z-scores between statin users and non-users while adjusting for socio-demographic, diabetes-related, and cardiovascular covariates which included change in cholesterol by year. Overall cognition, memory, and executive function was found to be significantly better in statin users (p less then 0.0008). This suggests a positive effect of statins on cognitive function of type 2 diabetes patients that is independent of cholesterol levels.Photocopying in offices and printing centers releases nanoparticles that can reach the brain following inhalation. We examined whether subcytotoxic levels of airborne photocopy-emitted nanoparticles could potentiate perturbation of synaptic signaling in cultured neurons following exposure to amyloid-β (Aβ). Signaling was only transiently inhibited by Aβ or nanoparticles individually, but remained statistically reduced in cultures receiving both after 24 h. In vitro and in vivo studies with copier emitted nanoparticles have consistently demonstrated inflammation, oxidative stress, and cytotoxicity. Since Aβ can accumulate years before cognitive decline, subcytotoxic levels of nanoparticles are one factor that could potentiate Aβ-induced impairment of synaptic activity during these early stages.Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-β deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AβPP, PSEN1, and PSEN2 that alter amyloid-β precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AβPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AβPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.Calcium ions are crucial in the process of information transmission and integration in the central nervous system (CNS). These ions participate not only in intracellular mechanisms but also in intercellular processes. The changes in the concentration of Ca2 + ions modulate synaptic transmission, whereas neuronal activity induces calcium ion waves. Disturbed calcium homeostasis is thought to be one of the main features in the pathophysiology of Alzheimer's disease (AD), and AD pathogenesis is closely connected to Ca2 + signaling pathways. The effects of changes in neuronal Ca2 + are mediated by neuronal calcium sensor (NCS) proteins. It has been revealed that NCS proteins, with special attention to visinin-like protein 1 (VILIP-1), might have a connection to the etiology of AD. In the CNS, VILIP-1 influences the intracellular neuronal signaling pathways involved in synaptic plasticity, such as cyclic nucleotide cascades and nicotinergic signaling. This particular protein is implicated in calcium-mediated neuronal injury as well.
Here's my website: https://www.selleckchem.com/products/poly-vinyl-alcohol.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team