NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Id associated with two-dimensional layered dielectrics from very first ideas.
Furthermore, it is shown that, compared to existing methods, ICIimpute provides superior imputation accuracy but requires more computational time.A multi-exposure fused (MEF) image is generated by multiple images with different exposure levels, but the transformation process will inevitably introduce various distortions. Therefore, it is worth discussing how to evaluate the visual quality of MEF images. This paper proposes a new blind quality assessment method for MEF images by considering their characteristics, and it is dubbed as BMEFIQA. More specifically, multiple features that represent different image attributes are extracted to perceive the various distortions of MEF images. Among them, structural, naturalness, and colorfulness features are utilized to describe the phenomena of structure destruction, unnatural presentation, and color distortion, respectively. All the captured features constitute a final feature vector for quality regression via random forest. Experimental results on a publicly available database show the superiority of the proposed BMEFIQA method to several blind quality assessment methods.Zipf's law of abbreviation, which posits a negative correlation between word frequency and length, is one of the most famous and robust cross-linguistic generalizations. At the same time, it has been shown that contextual informativity (average surprisal given previous context) is more strongly correlated with word length, although this tendency is not observed consistently, depending on several methodological choices. The present study examines a more diverse sample of languages than the previous studies (Arabic, Finnish, Hungarian, Indonesian, Russian, Spanish and Turkish). I use large web-based corpora from the Leipzig Corpora Collection to estimate word lengths in UTF-8 characters and in phonemes (for some of the languages), as well as word frequency, informativity given previous word and informativity given next word, applying different methods of bigrams processing. The results show different correlations between word length and the corpus-based measure for different languages. I argue that these differences can be explained by the properties of noun phrases in a language, most importantly, by the order of heads and modifiers and their relative morphological complexity, as well as by orthographic conventions.In present times, barcode decoders on mobile phones can extract the data content of QR codes. However, this convenience raises concerns about security issues when using QR codes to transmit confidential information, such as e-tickets, coupons, and other private data. Moreover, current secret hiding techniques are unsuitable for QR code applications since QR codes are module-oriented, which is different from the pixel-oriented hiding manner. In this article, we propose an algorithm to conceal confidential information by changing the modules of the QR Code. This new scheme designs the triple module groups based on the concept of the error correction capability. Additionally, this manner can conceal two secret bits by changing only one module, and the amount of hidden confidential information can be twice the original amount. As a result, the ordinary data content (such as URL) can be extracted correctly from the generated QR code by any barcode decoders, which does not affect the readability of scanning. Furthermore, only authorized users with the secret key can further extract the concealed confidential information. This designed scheme can provide secure and reliable applications for the QR system.Particle swarm optimization (PSO) is a popular method widely used in solving different optimization problems. Unfortunately, in the case of complex multidimensional problems, PSO encounters some troubles associated with the excessive loss of population diversity and exploration ability. This leads to a deterioration in the effectiveness of the method and premature convergence. In order to prevent these inconveniences, in this paper, a learning competitive swarm optimization algorithm (LCSO) based on the particle swarm optimization method and the competition mechanism is proposed. In the first phase of LCSO, the swarm is divided into sub-swarms, each of which can work in parallel. In each sub-swarm, particles participate in the tournament. The participants of the tournament update their knowledge by learning from their competitors. In the second phase, information is exchanged between sub-swarms. The new algorithm was examined on a set of test functions. To evaluate the effectiveness of the proposed LCSO, the test results were compared with those achieved through the competitive swarm optimizer (CSO), comprehensive particle swarm optimizer (CLPSO), PSO, fully informed particle swarm (FIPS), covariance matrix adaptation evolution strategy (CMA-ES) and heterogeneous comprehensive learning particle swarm optimization (HCLPSO). The experimental results indicate that the proposed approach enhances the entropy of the particle swarm and improves the search process. Moreover, the LCSO algorithm is statistically and significantly more efficient than the other tested methods.The randomness property of wireless channels restricts the improvement of their performance in wireless networks. As a novel solution for overcoming this, a reconfigurable intelligent surface (RIS) was introduced to reshape wireless physical environments. Initially, the multi-path and Doppler effects are discussed in a case in which a reflector was considered to reflect the incident signal for wireless communication. Subsequently, the results for the transmission signal were analyzed when a reflector was coated with an RIS. Specifically, the multi-path fading stemming from the movement of the mobile transmitter was eliminated or mitigated by utilizing an RIS. Meanwhile, the Doppler effect was also reduced to restrain the rapid fluctuations in the transmission signal by using a tunable RIS in real time. The simulation results demonstrate that the magnitude and spectrum of the received signal can be regulated by an RIS. The multi-path fading and Doppler effect can be effectively mitigated when the reflector is coated with an RIS in wireless networks.Many visual representations, such as volume-rendered images and metro maps, feature a noticeable amount of information loss due to a variety of many-to-one mappings. At a glance, there seem to be numerous opportunities for viewers to misinterpret the data being visualized, hence, undermining the benefits of these visual representations. In practice, there is little doubt that these visual representations are useful. The recently-proposed information-theoretic measure for analyzing the cost-benefit ratio of visualization processes can explain such usefulness experienced in practice and postulate that the viewers' knowledge can reduce the potential distortion (e.g., misinterpretation) due to information loss. This suggests that viewers' knowledge can be estimated by comparing the potential distortion without any knowledge and the actual distortion with some knowledge. However, the existing cost-benefit measure consists of an unbounded divergence term, making the numerical measurements difficult to interpret. Thate bounded divergence measure for improving the existing cost-benefit measure.Redundant manipulators are widely used in fields such as human-robot collaboration due to their good flexibility. To ensure efficiency and safety, the manipulator is required to avoid obstacles while tracking a desired trajectory in many tasks. Conventional methods for obstacle avoidance of redundant manipulators may encounter joint singularity or exceed joint position limits while tracking the desired trajectory. By integrating deep reinforcement learning into the gradient projection method, a reactive obstacle avoidance method for redundant manipulators is proposed. We establish a general DRL framework for obstacle avoidance, and then a reinforcement learning agent is applied to learn motion in the null space of the redundant manipulator Jacobian matrix. The reward function of reinforcement learning is redesigned to handle multiple constraints automatically. Specifically, the manipulability index is introduced into the reward function, and thus the manipulator can maintain high manipulability to avoid joint singularity while executing tasks. To show the effectiveness of the proposed method, the simulation of 4 degrees of planar manipulator freedom is given. Compared with the gradient projection method, the proposed method outperforms in a success rate of obstacles avoidance, average manipulability, and time efficiency.Computational textual aesthetics aims at studying observable differences between aesthetic categories of text. We use Approximate Entropy to measure the (un)predictability in two aesthetic text categories, i.e., canonical fiction ('classics') and non-canonical fiction (with lower prestige). Approximate Entropy is determined for series derived from sentence-length values and the distribution of part-of-speech-tags in windows of texts. For comparison, we also include a sample of non-fictional texts. Moreover, we use Shannon Entropy to estimate degrees of (un)predictability due to frequency distributions in the entire text. Our results show that the Approximate Entropy values can better differentiate canonical from non-canonical texts compared with Shannon Entropy, which is not true for the classification of fictional vs. expository prose. Canonical and non-canonical texts thus differ in sequential structure, while inter-genre differences are a matter of the overall distribution of local frequencies. We conclude that canonical fictional texts exhibit a higher degree of (sequential) unpredictability compared with non-canonical texts, corresponding to the popular assumption that they are more 'demanding' and 'richer'. read more In using Approximate Entropy, we propose a new method for text classification in the context of computational textual aesthetics.We examine the emergence of objectivity for quantum many-body systems in a setting without an environment to decohere the system's state, but where observers can only access small fragments of the whole system. We extend the result of Reidel (2017) to the case where the system is in a mixed state, measurements are performed through POVMs, and imprints of the outcomes are imperfect. We introduce a new condition on states and measurements to recover full classicality for any number of observers. We further show that evolutions of quantum many-body systems can be expected to yield states that satisfy this condition whenever the corresponding measurement outcomes are redundant.Heterogeneous information network (HIN) embedding is an important tool for tasks such as node classification, community detection, and recommendation. It aims to find the representations of nodes that preserve the proximity between entities of different nature. A family of approaches that are widely adopted applies random walk to generate a sequence of heterogeneous contexts, from which, the embedding is learned. However, due to the multipartite graph structure of HIN, hub nodes tend to be over-represented to their context in the sampled sequence, giving rise to imbalanced samples of the network. Here, we propose a new embedding method CoarSAS2hvec. The self-avoiding short sequence sampling with the HIN coarsening procedure (CoarSAS) is utilized to better collect the rich information in HIN. An optimized loss function is used to improve the performance of the HIN structure embedding. CoarSAS2hvec outperforms nine other methods in node classification and community detection on four real-world data sets. Using entropy as a measure of the amount of information, we confirm that CoarSAS catches richer information of the network compared with that through other methods.
My Website: https://www.selleckchem.com/peptide/lypressin-acetate.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.