Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
05). Furthermore, the paternity rate was 12% and 5% in testicular cancer survivors with three and four cycles of cisplatin-based chemotherapy, respectively (P<0.05). However, of 121 survivors who wanted to have children, 14 (12%) received counseling about infertility treatment.
Testicular cancer survivors preserving their sperm have a higher paternity rate after chemotherapy, especially after four cycles, than those not using cryopreserved sperm. Physicians who give chemotherapy for testicular cancer need to take particular care not only with respect to recurrence of testicular cancer, but also to post-treatment fertility.
Testicular cancer survivors preserving their sperm have a higher paternity rate after chemotherapy, especially after four cycles, than those not using cryopreserved sperm. Physicians who give chemotherapy for testicular cancer need to take particular care not only with respect to recurrence of testicular cancer, but also to post-treatment fertility.Highly efficient and stable quasi-2D hybrid perovskite solar cells (PSCs) using hydrophobic 4-(trifluoromethyl) benzylamine (4TFBZA) as the spacer cation are successfully demonstrated. It is found that the incorporation of hydrophobic 4TFBZA into MAPbI3 can effectively induce a spontaneous upper gradient 2D (SUG-2D) structure, passivate the trap states, and restrain the ion motion. Meanwhile, the strong hydrogen bonding of F···HN between 4TFBZA ions and methylamine ions can effectively suppress the decomposition of perovskite, which gives the device a better thermal stability. Besides, due to the SUG-2D structure with hydrophobic 4TFBZA, the device also exhibits a better moisture stability. The SUG-2D-structure-based device exhibits a power conversion efficiency of 17.07% with a high open-circuit voltage of 1.10 V and a notable fill factor of 71%. This work provides a new strategy for constructing efficient and stable quasi-2D PSCs, and it is an inspiration for the packaging strategy of perovskites.3D printing has emerged as an enabling approach in a variety of different fields. However, the bulk volume of printing systems limits the expansion of their applications. In this study, a portable 3D Digital Light Processing (DLP) printer is built based on a smartphone-powered projector and a custom-written smartphone-operated app. Constructs with detailed surface architectures, porous features, or hollow structures, as well as sophisticated tissue analogs, are successfully printed using this platform, by utilizing commercial resins as well as a range of hydrogel-based inks, including poly(ethylene glycol)-diacrylate, gelatin methacryloyl, or allylated gelatin. Moreover, due to the portability of the unique DLP printer, medical implants can be fabricated for point-of-care usage, and cell-laden tissues can be produced in situ, achieving a new milestone for mobile-health technologies. Additionally, the all-in-one printing system described herein enables the integration of the 3D scanning smartphone app to obtain object-derived 3D digital models for subsequent printing. Along with further developments, this portable, modular, and easy-to-use smartphone-enabled DLP printer is anticipated to secure exciting opportunities for applications in resource-limited and point-of-care settings not only in biomedicine but also for home and educational purposes.The production of high-value chemicals by single-atom catalysis is an attractive proposition for industry owing to its remarkable selectivity. Successful demonstrations to date are mostly based on gas-phase reactions, and reports on liquid-phase catalysis are relatively sparse owing to the insufficient activation of reactants by single-atom catalysts (SACs), as well as, their instability in solution. Here, mechanically strong, hierarchically porous carbon plates are developed for the immobilization of SACs to enhance catalytic activity and stability. The carbon-based SACs exhibit excellent activity and selectivity (≈68%) for the synthesis of substituted quinolines by a three-component oxidative cyclization, affording a wide assortment of quinolines (23 examples) from anilines and acetophenones feedstock in an efficient, atom-economical manner. this website Particularly, a Cavosonstat derivative can be synthesized through a one-step, Fe1 -catalyzed cyclization instead of traditional Suzuki coupling. The strategy is also applicable to the deuteration of quinolines at the fourth position, which is challenging by conventional methods. The synthetic utility of the carbon-based SAC, together with its reusability and scalability, renders it promising for industrial scale catalysis.Transparent electrodes that form seamless contact and enable optical interrogation at the electrode-brain interface are potentially of high significance for neuroscience studies. Silk hydrogels can offer an ideal platform for transparent neural interfaces owing to their superior biocompatibility. However, conventional silk hydrogels are too weak and have difficulties integrating with highly conductive and stretchable electronics. Here, a transparent and stretchable hydrogel electrode based on poly(3,4-ethylenedioxythiophene)polystyrene sulfonate (PEDOTPSS) and PEGylated silk protein is reported. PEGylated silk protein with poly(ethylene glycol) diglycidyl ether (PEGDE) improves the Young's modulus to 1.51-10.73 MPa and the stretchability to ≈400% from conventional silk hydrogels ( less then 10 kPa). The PEGylated silk also helps form a robust interface with PEDOTPSS thin film, making the hydrogel electrode synergistically incorporate superior stretchability (≈260%), stable electrical performance (≈4 months), and a low sheet resistance (≈160 ± 56 Ω sq-1 ). Finally, the electrode facilitates efficient electrical recording, and stimulation with unobstructed optical interrogation and rat-brain imaging are demonstrated. The highly transparent and stretchable hydrogel electrode offers a practical tool for neuroscience and paves the way for a harmonized tissue-electrode interface.A study of 1304 data points collated over 266 papers statistically evaluates the relationships between carbon nanotube (CNT) material characteristics, including electrical, mechanical, and thermal properties; ampacity; density; purity; microstructure alignment; molecular dimensions and graphitic perfection; and doping. Compared to conductive polymers and graphitic intercalation compounds, which have exceeded the electrical conductivity of copper, CNT materials are currently one-sixth of copper's conductivity, mechanically on-par with synthetic or carbon fibers, and exceed all the other materials in terms of a multifunctional metric. Doped, aligned few-wall CNTs (FWCNTs) are the most superior CNT category; from this, the acid-spun fiber subset are the most conductive, and the subset of fibers directly spun from floating catalyst chemical vapor deposition are strongest on a weight basis. The thermal conductivity of multiwall CNT material rivals that of FWCNT materials. Ampacity follows a diameter-dependent power-law from nanometer to millimeter scales.
Homepage: https://www.selleckchem.com/products/Irinotecan-Hcl-Trihydrate-Campto.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team