Notes
Notes - notes.io |
Moreover, MPs aggravated Phe-induced bradycardia in embryos, suggesting that MPs exacerbated the transgenerational toxicity of Phe. These findings reveal that the growing number of MPs in the ocean might amplify the adverse effects of organic pollutants on the health and population stability of marine fishes, and this problem merits more attention.Cerium is a critical element to modern technologies. Nowadays, its increased applications have led to elevated levels in the environment. Cerium recovery by microorganisms has gained a great deal of attention. Here, our research showed that Bacillus licheniformis could be used to recover Ce3+ from aqueous solution. The adsorption capacity of cerium on this bacterial strain achieved 38.93 mg/g (dry weight) biomass. Adsorption kinetics followed a pseudo-second-order rate model, and adsorption isotherm was fitted well with the Freundlich model. Scanning electron microscope (SEM) observations coupled with X-ray energy dispersive spectroscopy (EDS) analysis revealed a spatial association of Ce with C, N, O, S, and P. Fourier transform infrared spectroscopy (FT-IR) analysis further suggested that the phosphate and carboxyl groups on the cell surface might be responsible for the adsorption of cerium. Furthermore, X-ray diffraction (XRD) and transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) suggested that cerium initially occurred on the bacterial cell surface as Ce(OH)3, which was mainly converted to monazite (CePO4) and a small amount of CeO2 overtime. Hydrothermal treatment was used to accelerate the mineralization process of cerium by B. licheniformis. The hydrothermal treatment is conducted for comparative analysis of mineralization process in extreme geological condition.Recently, lead halide perovskite solar cells have become a promising next-generation photovoltaics candidate for large-scale application to realize low-cost renewable electricity generation. Although perovskite solar cells have tremendous advantages such as high photovoltaic performance, low cost and facile solution-based fabrication, the issues involving lead could be one of the main obstacles for its commercialization and large-scale applications. Lead has been widely used in photovoltaics industry, yielding its environmental and health issues of vital importance because of the widespread application of photovoltaics. When the solar cell panels especially perovskite solar cells are damaged, lead would possibly leak into the surrounding environment, causing air, soil and groundwater contamination. Therefore, lots of research efforts have been put into evaluating the lead toxicity and potential leakage issues, as well as studying the encapsulation of lead to deal with leakage issue during fire hazard and precipitation in photovoltaics. In this review, we summarize the latest progress on investigating the lead safety issue on photovoltaics, especially lead halide perovskite solar cells, and the corresponding solutions. We also outlook the future development towards solving the lead safety issues from different aspects.The bio-removal efficiency of sulfamethoxazole (SMX) from wastewater is usually very poor. In this paper a new efficient method to biodegrade SMX was reported. The SMX biodegradation efficiency by Paracoccus denitrificans was observed to be remarkably enhanced from 48.9% to 94.2% after Shewanella oneidensis MR-1 addition. The mechanisms investigation revealed that P. denitrificans was the dominant microbe for SMX biodegradation. Although SMX biodegradation by S. oneidensis MR-1 alone was negligible, its presence advanced NADH generation. The proteomics assay revealed that the expression of key proteins relevant with complex I and III and cytochrome c in electron transfer chain were increased due to P. denitrificans acquiring iron from periplasm to cytoplasm being improved. In addition, the extracellular electron transfer capability was enhanced as S. oneidensis MR-1 not only produced flavin, but caused P. denitrificans to secret more extracellular polymeric substances. Further investigation indicated that the expression of key enzymes related to electron consumption in SMX biodegradation was up-regulated. Based on these findings, the pathways of S. oneidensis MR-1 promoting SMX biodegradation were proposed. As all nitrate could be removed with almost no nitrite accumulation, this study would also provide an attractive way for simultaneous bio-removal of multiple pollutants from wastewater.The presence of per and poly-fluoroalkyl substances (PFAS), commonly referred to as forever chemicals, in aquatic systems is a serious global health problem. While the remediation of PFAS from aqueous media has been extensively investigated, their interactions with and removal from biological systems have received far less attention. We report herein structural alterations to human serum albumin (HSA) upon addition of perfluoro(2-methyl-3-oxahexanoic) acid (Gen X) monitored by changes to the fluorescence and circular dichroism (CD) spectra of HSA. The equilibrium association constant for Gen X binding to HSA is 7( ± 1) × 103 M-1 determined from changes in HSA fluorescence emission data during titration. Site-specific HSA binding fluorophores, 8-anilinonaphthalene-1-sulfonic acid (1,8-ANS), warfarin and dansyl-L-proline were used to investigate the specific binding sites of Gen X on HSA. A competitive displacement study yields association constants for Gen X to HSA at the 1,8-ANS, warfarin, and dansyl-L-proline binding sites to be 6.25 ( ± 0.5) × 104 M-1, 1.1 × 106 M-1, and 2.5( ± 0.2) × 109 M-1 respectively. Addition of β-cyclodextrin (β-CD) and heptakis(6-deoxy-6-amino)-β-cyclodextrin heptahydrochloride to the HSAGen X complex leads to the effective extraction of Gen X from the complex with the return of HSA in its native form. Gen X also leads to displacement of site-specific binding fluorophores bound to HSA, while subsequent addition of β-CD extracts Gen X from HSA with the return of the characteristic fluorescence of the HSA bound site-specific agent. These results illustrate the strong and specific binding sites of Gen X on HSA and demonstrate the principles for the potential application of β-CD for the remediation of PFAS from biological systems.Microplastics (MPs) are creating an emerging threat on the soil ecosystems and are of great global concern. However, the distribution in soil-plant system, as well as the phytotoxicity and impact mechanisms of MPs remain largely unexplored so far. This study introduced the diverse sources of MPs and showed the significant spatial variation in the global geographic distribution of MPs contamination based on data collected from 116 studies (1003 sampling sites). We systematically discussed MPs phytotoxicity, such as plant uptake and migration to stems and leaves, delaying seed germination, impeding plant growth, inhibiting photosynthesis, interfering with nutrient metabolism, causing oxidative damage, and producing genotoxicity. We further highlighted the alterations of soil structure and function by MPs, as well as their self and load toxicity, as potential mechanisms that threaten plants. Finally, this paper provided several preventive strategies to mitigate soil MPs pollution and presented research gaps in the biogeochemical behavior of MPs in soil-plant systems. Meanwhile, we recommended that methods for the quantitative detection of MPs accumulated in plant tissues should be explored and established as soon as possible. This review will improve the understanding of the environmental behavior of MPs in soil-plant systems and provide a theoretical reference to better assess the ecological risk of MPs.Recently, persulfate-based advanced oxidation processes (persulfate-AOPs) are booming rapidly due to their promising potential in treating refractory contaminants. As a type of popular two-dimensional material, layered double hydroxides (LDHs) are widely used in energy conversion, medicine, environment remediation and other fields for the advantages of high specific surface area (SSA), good tunability, biocompatibility and facile fabrication. These excellent physicochemical characteristics may enable LDH-based materials to be promising catalysts in persulfate-AOPs. In this work, we make a summary of LDHs and their composites in persulfate-AOPs from different aspects. Firstly, we introduce different structure and important properties of LDH-based materials briefly. Secondly, various LDH-based materials are classified according to the type of foreign materials (metal or carbonaceous materials, mainly). Latterly, we discuss the mechanisms of persulfate activation (including radical pathway and nonradical pathway) by these catalysts in detail, which involve (i) bimetallic synergism for radical generation, (ii) the role of carbonaceous materials in radical generation, (iii) singlet oxygen (1O2) production and several special nonradical mechanisms. In addition, the catalytic performance of LDH-based catalysts for contaminants are also summarized. Finally, challenges and future prospects of LDH-based composites in environmental remediation are proposed. We expect this review could bring new insights for the development of LDH-based catalyst and exploration of reaction mechanism.This study explored the impact of pyrolysis parameters and modification methods on the characteristics of pharmaceutical sludge biochar, and investigated its capacity and mechanisms for levofloxacin (LEV), a typical fluoroquinolone antibiotics, adsorption. The results showed that SBET of the biochar was improved with temperature increase, but decreased when temperature reached 900 °C. Under the optimal pyrolysis condition of 800 °C and 90 min, the biochar possessed the highest SBET of 264.05 m2 g-1, excellent iodine value of 401.41 ± 3.84 mg∙g-1 and phenol adsorption of 57.36 ± 3.39 mg∙g-1. Troglitazone clinical trial Among KOH, ZnCl2, and CO2 modifications, ZnCl2 modification achieved the highest phenol adsorption of 123.40 ± 4.65 mg g-1, with a significantly improved SBET of 534.91 m2 g-1. The maximum LEV adsorption capacity of ZnCl2 modified biochar, PZBC800, reached 159.26 mg g-1, which overwhelmed the reported sludge biochars. BET, zeta potential, FT-IR, XPS, and Raman analysis, along with quantum chemistry calculation, revealed that pore filling, hydrogen bonding, π-π interaction, surface complexation, and electrostatic interaction were the main mechanisms for the excellent LEV adsorption performance of PZBC800. Deep removal (99.9%) of Fluoroquinolones (FQs) from pharmaceutical wastewater was also achieved by PZBC800 adsorption. The study promoted the development of pharmaceutical sludge biochar preparation and its application in advanced treatment of FQs pharmaceutical wastewater.This study reports an efficient, green, sensitive and simple analytical protocol for trace determination of methyl paraben, ethyl paraben, propyl paraben, butylparaben and benzyl paraben by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The analytes were preconcentrated using an ultrasonication supported (US) dispersive solid phase extraction (DSPE) method based on reduced graphene oxide (rGO) modified iron nanoparticles (US-Fe3O4@rGO-DSPE). A reversed-phase C18 column and an isocratic elution program comprising of 20 mM phosphate buffer (pH 4.50) and acetonitrile(5842, v/v) were used to elute and separate the analytes for detection. The limits of detection determined for the analytes were very low and were in the range of 0.02 - 0.16 ng mL-1. The coefficients of determination obtained for the analytes ranged from 0.9973 to 0.9998, and this validated good linearity of the method.Percent relative standard deviations obtained in the range of 2.5 - 10.6% verified the method's high intraday repeatability.
Homepage: https://www.selleckchem.com/products/troglitazone-cs-045.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team