NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Recirculating handled sewage debris pertaining to farming make use of: Life cycle evaluation to get a round economic system.
Turbidity is an indication of water quality and enables the growth of pathogenic microorganisms. For drinking water treatment plants (DWTPs), violent fluctuations in turbidity are highly disruptive to operational performance due to the lag in process parameter adjustments. Such risks must be carefully managed to guarantee safe drinking water. Machine learning techniques have been proven to be effective for modeling complex nonlinear environmental systems, and this study adopted such a technique to develop a model for predicting source water turbidity for DWTPs to allow DWTPs to make proactive interventions in advance. A random forest (RF) model used preprocessed (empirical mode decomposition and quartile rejecting) meteorological factors (wind speed, wind direction, air temperature, and rainfall) as the input variables, to establish the turbidity prediction of a lake with significant turbidity in China's South Tai Lake. The modeling process included four main stages (1) source data analysis, (2) raw data preprocessing, (3) modeling and tuning, and (4) model evaluation. The results of the RF model indicated that the correlation coefficient between the predicted and actual sequences is over 0.7, and more than 55% of the predicted values could control the errors within 20% compared to the actual measured values, suggesting that machine learning techniques are suitable for predicting the turbidity of raw source water. It was found that the RF model can provide a modest performance boost because of its stronger capacity to capture nonlinear interactions in the data. The findings of this study can inform the development of turbidity prediction models using readily available meteorological forecast data. The model can be applied to other DWTPs using similar shallow lakes as water sources.In this research, magnetic MgFe2O4-CaFe2O4 photocatalyst powder was prepared from recycling of electric arc furnace (EAF) dust as a secondary source through a two-step leaching process followed by co-precipitation method. To maximize the total Fe to Ca recovery ratio (F/C) and evaluate the effective parameters of sulfuric acid concentration and temperature, response surface methodology (RSM) as a design of experiment was used. The best temperature and acid concentration were obtained as 85 °C and 1 M, respectively for the second step of the leaching process. X-ray diffraction (XRD) results indicated that the synthesized nanocomposite sample contains MgFe2O4 and CaFe2O4 phases together with a small amount of Ca2Fe2O5. The saturation magnetization and optical band gap of the synthesized composite powder were 24 emu/g and 2.17 eV, respectively. X-Ray photoelectron spectroscopy (XPS) result revealed the oxidation states as Fe3+, Ca2+, Mg2+ and O2-. Energy dispersive X-ray spectroscopy (EDS) showed that the elements were uniformly distributed within the nanostructured particles. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) results indicated the presence of CaFe2O4 and MgFe2O4 nanoparticles with good contact between them. The nanocomposite sample showed the capability of 45% for degrading methylene blue (MB) dye under 240 min visible light irradiation. The reusability tests showed that the photocatalytic activity of the nanocomposite was not considerably changed after three cycles.This work presents the morphological, structural and photocatalytic properties of flexible graphene composites decorated with Ni@TiO2W nanoparticles (TiNiW NPs) with an average size of 27 ± 2 nm. The TiNiW NPs were immobilized on the surface of a flexible graphene composite using a PVA-based slurry-paste (FG/TiNiW composite). The SEM study showed that the TiNiW NPs remained exposed on the surface of the FG/TiNiW composite, which benefited its photocatalytic activity. The photocatalytic performance for the degradation of acetaminophen (ACT) was evaluated using both the TiNiW powders and the FG/TiNiW composite, obtaining maximum degradation efficiencies of 100 and 86%, respectively, after 3 h under natural solar irradiation. The degradation of ACT was caused mainly by the reactive oxygen species such as OH radicals and h+, which was confirmed by scavenger experiments. Photoluminescence, XPS and absorbance experiments revealed that oxygen vacancy defects were created by i) doping the TiNiW NPs with W and by ii) introducing graphene into the composites. These defects enhanced the absorbance of light in the range of 400-800 nm, which in turn, promoted the photocatalytic degradation of ACT. Moreover, the reuse experiments confirmed that both the TiNiW NPs and FG/TiNiW composite were very stable for the degradation of ACT, since degradation efficiencies >82% were obtained after 4 reuse cycles for both photocatalysts. The experimental findings of this work demonstrate that the flexible TiO2/graphene composites are a feasible option for the removal of pharmaceutical contaminants from water using natural solar irradiation.Classical biocontrol is key for the successful management of invasive alien plants; yet, it is still relatively new in Europe. Although post-release monitoring is essential to evaluate the effectiveness of a biocontrol agent, it is often neglected. This study reports the detailed post-release monitoring of the first biocontrol agent intentionally introduced against an invasive plant in continental Europe. The Australian bud-galling wasp Trichilogaster acaciaelongifoliae (Frogatt) is used to control the invasive Acacia longifolia (Andr.) Willd., with a long history of success in South Africa. This biocontrol agent was first released in Europe in 2015 at several sites along the Portuguese coast. We monitored the establishment, spread and early impacts of T. acaciaelongifoliae on target-plants in Portugal, across 61 sites, from 2015 to 2020. Initial release of adults emerging from galls imported from South Africa and the subsequent releases from galls established in Portugal (2018 onwards) was compared, assessininitial phenological mismatch and adverse weather conditions. To achieve this, it had to establish and synchronize its life cycle with the phenology of its host-plant, after which it developed exponentially and began to show significant impacts on the reproductive output of A. longifolia.The aim of this study was to recover nutrients (NPK and other) from the liquid fraction of digestate obtained by rumen fluid enhanced anaerobic co-digestion of sewage sludge and cattail (Typha latifolia grass). Firstly, anaerobic digestion (AD) studies were performed to examine the biogas potential of selected substrates. The liquid fraction of digestate was then used in nutrient recovery experiments. Four methods were applied to recover nutrients i) conventional struvite precipitation by MgCl2, ii) simultaneous precipitation and ion exchange by Na-zeolite, and iii) two-step recovery using precipitation, followed by ion exchange with powdered or iv) granulated Na-zeolite. The products of nutrient recovery were characterised using different chemical methods and the cress seed germination test was performed to evaluate their fertility potential. The results show that co-digestion of sewage sludge with cattail enhanced biogas production by almost 50 vol%. The addition of rumen fluid positively contributed to theood performance in the recovery of K+ ions.For the first time, the basics of waste-free technology for capturing heavy metal ions from urban surface runoff from residential areas of the city with the final utilization of the regenerate were developed. The technology eliminates the subsequent contamination of the lithosphere and atmosphere by regeneration products. The expediency of using fibrous chemosorbents (cationic and polyampholyte) for capturing heavy metal ions from urban surface runoff of residential areas of megalopolises has been justified because of possibility of recycling heavy metal ions and regenerating the sorbent. Model solutions of Fe, Cu, Zn, Pb salts, as well as samples of solutions of real surface effluents were studied. Small experimental samples of filters of various designs were designed and manufactured. The filters were tested at a functioning treatment facility. It was demonstrated that the content of Fe3+, Cu2+, Zn2+, and Pb2+ ions in real surface effluents decreased by 1.4-7 times after passing the effluents even through these small experimental filters. The expediency and possibility of recycling the regenerate as inorganic pigments for the paint industry is shown.Diesel removal of contaminated soil by washing/flushing was enhanced with micro-bubbles and selected surfactants based on their solubilization properties and decontamination capacities. The influencing factors were studied to aim for increasing washing/flushing efficacy. The mixture solution of saponin and cyclodextrin increased the removal efficiency significantly compared to the single-agent solution flushing with an increasing range of 20%-31%. Meanwhile, micro-bubble enhancement increased over 20% of the diesel removal for the sandy soil flushing. As the flushing process may cause soil eroded, the TDS and soil solute in flushing solution were measured to evaluate the circulation time. The 90 min flushing time ensured the cleaning goal and reserved the soil solute by circulation flushing. The soil solute, especially the electron acceptor (NO3-) , was remained in the soil, which was highly demanded for residual diesel biodegradation of loam soil. It is concluded that mixed agents, circulation of flushing solution, and micro-bubbles increased the diesel removal, and the circulation flushing could be very promising in practical applications.The pilot carbon emission trading scheme in Guangdong Province (GD ETS) of China has fulfilled seven compliance periods, and its potential impact on regulated firms has drawn increasing attention. This article empirically investigated the impact of the ETS on firm behaviors and competitiveness (i.e., cost competitiveness and green competitiveness) by surveying all power firms in the GD ETS. Low-carbon management, carbon asset transactions, and energy saving and emission reduction technology were identified as firm behaviors. The relationships among the ETS, firm behaviors, and firm competitiveness were tested by using bootstrap multiple mediation analyses. The results showed that the GD ETS has a positive impact on firm behaviors. The three examined firm behaviors actually reflect the depth of firm participation in the ETS. The more the firm participates, the greater the mediating effects that the firm behaviors exert on firm competitiveness are. Both carbon asset transactions and energy saving and emission reduction technology have a mediating effect on the relationship between the GD ETS and cost competitiveness, while only the latter mediates the relationship between the GD ETS and green competitiveness. Implications for policy makers and firm operators were discussed.To complete a loop of the Miscanthus value chain including production, phytomanagement, conversion to energy, and bioproducts, the wastes accumulated from these processes have to be returned to the production cycle to provide sustainable use of the feedstock, to reduce costs, and to ensure a zero-waste approach. PIK-III This can be achieved by converting Miscanthus feedstock into biogas and biochar using pyrolysis and then returning biochar to the production cycle of Miscanthus crop applications in the phytotechnology of trace elements (TEs)-contaminated/marginal lands. These processes are subjects of the current review, which focused on the peculiarities of biochar received from Miscanthus by pyrolysis, its properties, the impact on soil characteristics, the phytoremediation process, biomass yield, and the abundance of soil biodiversity. Results from the literature indicated that the pH, surface area, and porosity of Miscanthus biochar are important in determining its impact on soil characteristics. It was inferred that the most effective Miscanthus biochar was produced with a pyrolysis temperature of about 600 °C with a residence time from about 30 min to an hour.
Read More: https://www.selleckchem.com/products/pik-iii.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.