Notes
Notes - notes.io |
This paper presents a control technique for reducing the reflection of acoustic signals for the plane array of multilayer acoustic absorbers underwater. In order to achieve this, a plane array of multilayer acoustic absorbers is proposed to attenuate low-frequency noise, with each unit consisting of a piezoelectric transducer, two layers of polyvinylidene fluorides and three layers of the acoustic window. Time-delay separation is used to find the incident and reflected acoustic signals to achieve reflected sound reduction. Experimental comparison of the attenuation rate of the reflected acoustic signal when performing passive and active controls is considered to verify the effectiveness of the time-delay separation technique applied plane array absorbers. Experiments on the plane array of smart skin absorbers confirmed that the reduction of reflected acoustic signals makes it suitable for a wide range of underwater applications.To enhance the safety of marine navigation, one needs to consider the involvement of the automatic identification system (AIS), an existing system designed for ship-to-ship and ship-to-shore communication. Previous research on the quality of AIS parameters revealed problems that the system experiences with sensor data exchange. In coastal areas, littoral AIS does not meet the expectations of operational continuity and system availability, and there are areas not covered by the system. Therefore, in this study, process models were designed to simulate the tracking of vessel trajectories, enabling system failure detection based on integrity monitoring. Three methods for system integrity monitoring, through hypotheses testing with regard to differences between model output and actual simulated vessel positions, were implemented, i.e., a Global Positioning System (GPS) ship position model, Dead Reckoning and RADAR Extended Kalman Filter (EKF)-Simultaneous localization and mapping (SLAM) based on distance and bearing to navigational aid. The designed process models were validated on simulated AIS dynamic data, i.e., in a simulated experiment in the area of Gdańsk Bay. The integrity of AIS information was determined using stochastic methods based on Markov chains. The research outcomes confirmed the usefulness of the proposed methods. The results of the research prove the high level (~99%) of integrity of the dynamic information of the AIS system for Dead Reckoning and the GPS process model, while the level of accuracy and integrity of the position varied depending on the distance to the navigation aid for the RADAR EKF-SLAM process model.The Internet of things has produced several heterogeneous devices and data models for sensors/actuators, physical and virtual. Corresponding data must be aggregated and their models have to be put in relationships with the general knowledge to make them immediately usable by visual analytics tools, APIs, and other devices. In this paper, models and tools for data ingestion and regularization are presented to simplify and enable the automated visual representation of corresponding data. The addressed problems are related to the (i) regularization of the high heterogeneity of data that are available in the IoT devices (physical or virtual) and KPIs (key performance indicators), thus allowing such data in elements of hypercubes to be reported, and (ii) the possibility of providing final users with an index on views and data structures that can be directly exploited by graphical widgets of visual analytics tools, according to different operators. The solution analyzes the loaded data to extract and generate the Id to add a few features.The Time-Sensitive Networking (TSN) Task Group has standardised different mechanisms to provide Ethernet with hard real-time guarantees and reliability in layer 2 of the network architecture. Rosuvastatin datasheet Specifically, TSN proposes using space redundancy to increase the reliability of Ethernet networks, but using space redundancy to tolerate temporary faults is not a cost-effective solution. For this reason, we propose to use time redundancy to tolerate temporary faults in the links of TSN-based networks. Specifically, in previous works we proposed the Proactive Transmission of Replicated Frames (PTRF) mechanism to tolerate temporary faults in the links. Now, in this work we present a series of models of TSN and PTRF developed using PRISM, a probabilistic model checker that can be used to evaluate the reliability of systems. After that, we carry out a parametric sensitivity analysis of the reliability achievable by TSN and PTRF and we show that we can increase the reliability of TSN-based networks using PTRF to tolerate temporary faults in the links of TSN networks. This is the first work that presents a quantitative analysis of the reliability of TSN networks.Dual-task balance studies explore interference between balance and cognitive tasks. This study is a descriptive analysis of accelerometry balance metrics to determine if a verbal cognitive task influences postural control after the task ends. Fifty-two healthy older adults (75 ± 6 years old, 30 female) performed standing balance and cognitive dual-tasks. An accelerometer recorded movement from before, during, and after the task (reciting every other letter of the alphabet). Thirty-six balance metrics were calculated for each task condition. The effect of the cognitive task on postural control was determined by a generalized linear model. Twelve variables, including anterior-posterior centroid frequency, peak frequency and entropy rate, medial-later entropy rate and wavelet entropy, and bandwidth in all directions, exhibited significant differences between baseline and cognitive task periods, but not between baseline and post-task periods. These results indicate that the verbal cognitive task did alter balance, but did not bring about persistent effects after the task had ended. Traditional balance measurements, i.e., root mean square and normalized path length, notably lacked significance, highlighting the potential to use other accelerometer metrics for the early detection of balance problems. These novel insights into the temporal dynamics of dual-task balance support current dual-task paradigms to reduce fall risk in older adults.The use of high-throughput phenotyping with imaging and machine learning to monitor seedling growth is a tough yet intriguing subject in plant research. This has been recently addressed with low-cost RGB imaging sensors and deep learning during day time. RGB-Depth imaging devices are also accessible at low-cost and this opens opportunities to extend the monitoring of seedling during days and nights. In this article, we investigate the added value to fuse RGB imaging with depth imaging for this task of seedling growth stage monitoring. We propose a deep learning architecture along with RGB-Depth fusion to categorize the three first stages of seedling growth. Results show an average performance improvement of 5% correct recognition rate by comparison with the sole use of RGB images during the day. The best performances are obtained with the early fusion of RGB and Depth. Also, Depth is shown to enable the detection of growth stage in the absence of the light.Pyroelectrics are a wide class of materials that change their polarization when the system temperature varies. This effect is utilized for a number of different commercial and industrial applications ranging from simple thermal sensors and laser interferometers to water vapor harvesting. Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for studying the structure and dynamics of materials with unpaired electrons. Since heating accompanies a resonant change of the orientation of electron spins in an external magnetic field, pyroelectrics can be utilized as versatile detectors for so-called indirect detection of the EPR signal. In this work, we investigated three different types of PVDF (polyvinylidene difluoride) standard pyroelectric films with indium tin oxide, Cu/Ni, and Au coatings to determine their sensitivity for detecting EPR signals. All the films were shown to be able to detect the EPR spectra of about 1 μg of a standard stable free radical by heat release. A comparative study based on the calculation of the noise-equivalent power and specific detectivity from experimental spectra showed that the Au coated PVDF film is the most promising active element for measuring the EPR signal. Using the best achieved sensitivity, estimation is given whether this is sufficient for using a PVDF-based pyrodetector for indirectly detecting EPR spectra by recombination heat release or not.Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users' daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either "potentially COVID-19 infected" or "no evident signs of infection". We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).This study presents a novel feature-engineered-natural gradient descent ensemble-boosting (NGBoost) machine-learning framework for detecting fraud in power consumption data. The proposed framework was sequentially executed in three stages data pre-processing, feature engineering, and model evaluation. It utilized the random forest algorithm-based imputation technique initially to impute the missing data entries in the acquired smart meter dataset. In the second phase, the majority weighted minority oversampling technique (MWMOTE) algorithm was used to avoid an unequal distribution of data samples among different classes. The time-series feature-extraction library and whale optimization algorithm were utilized to extract and select the most relevant features from the kWh reading of consumers. Once the most relevant features were acquired, the model training and testing process was initiated by using the NGBoost algorithm to classify the consumers into two distinct categories ("Healthy" and "Theft"). Finally, each input feature's impact (positive or negative) in predicting the target variable was recognized with the tree SHAP additive-explanations algorithm.
Read More: https://www.selleckchem.com/products/Rosuvastatin-calcium(Crestor).html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team