Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Moreover, the good agreement between the experimental XRD patterns and the simulated ones allows us to assign the predicted P6/mmm Na2Au and Fm3[combining macron]m Na3Au as the experimental structures at 59.6 GPa. Our work indicates that the modulation of pressure and chemical composition is a useful way to stabilize novel intermetallic compounds.In this paper, the electronic structure and transport properties of a ductile thermoelectric material α-Ag2S are examined using first-principles calculations combined with the Boltzmann transport equation within a constant relaxation-time approximation. The use of the exchange-correlation functional SCAN + rVV10 successfully describes the geometric and electronic structure of α-Ag2S with a direct bandgap value of 0.99 eV, which is consistent with the previous experimental observations. Based on the calculations of the formation energy of typical intrinsic defects, it is found that intrinsic defect formation greatly affects the conductivity of the system where silver vacancy and interstitial silver act as p-type and n-type defects, respectively. Large Seebeck coefficients at room-temperature, of around -760 μV K-1 for n-type and 1400 μV K-1 for p-type, are realized. It is also suggested that the doping of fully filled d-block elements such as Cu and Au not only maintained the Seebeck coefficients at high values but also improved electrical conductivity by more than 1.4 times, leading to the improvement of the power factor by up to 40% compared to the non-doped sample at low carrier concentration.We report a joint experimental and theoretical study of the low-pressure phase of α'-Ga2S3 under compression. Theoretical ab initio calculations have been compared to X-ray diffraction and Raman scattering measurements under high pressure carried out up to 17.5 and 16.1 GPa, respectively. Quizartinib clinical trial In addition, we report Raman scattering measurements of α'-Ga2S3 at high temperature that have allowed us to study its anharmonic properties. To understand better the compression of this compound, we have evaluated the topological properties of the electron density, the electron localization function, and the electronic properties as a function of pressure. As a result, we shed light on the role of the Ga-S bonds, the van der Waals interactions inside the channels of the crystalline structure, and the single and double lone electron pairs of the sulphur atoms in the anisotropic compression of α'-Ga2S3. We found that the structural channels are responsible for the anisotropic properties of α'-Ga2S3 and the A'(6) phonon, known as the breathing mode and associated with these channels, exhibits the highest anharmonic behaviour. Finally, we report calculations of the electronic band structure of α'-Ga2S3 at different pressures and find a nonlinear pressure behaviour of the direct band gap and a pressure-induced direct-to-indirect band gap crossover that is similar to the behaviour previously reported in other ordered-vacancy compounds, including β-Ga2Se3. The importance of the single and, more specially, the double lone electron pairs of sulphur in the pressure dependence of the topmost valence band of α'-Ga2S3 is stressed.The electronic transport properties of in-plane graphene/MoS2/graphene heterojunctions are studied using density functional theory and the nonequilibrium Green's function method. It is found that different covalent bond connections cause different electron distributions, such as accumulation or depletion, on the contact surface. The C-S structure exhibits more electron accumulation and depletion, indicating that the electrons can easily transfer from MoS2 to graphene. Since the three structures all form covalent or ionic bonds, the tunneling barrier for carriers is very small. The C-S structure exhibits a smaller p-type Schottky barrier, indicating that it has better transport properties than the other two structures. We found that the effective doping method can reduce the Schottky-barrier height (SBH), resulting in smaller contact resistance. Thus, the current-voltage curves of the undoped and doped C-S structures exhibit rectification and approximately linear characteristics under a given bias, which agrees with experimental reports. These results provide insight for designing high-performance devices.The Pt(iv) complexes based on (SP-4-2)-dichlorido(cyclohexane-1,4-diamine)platinum(ii) (kiteplatin) and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid (POA) were investigated. Since POA contains a chiral carbon, all the possible Pt(iv) isomers were prepared and characterized, and their antiproliferative activity on six cancer cell lines was compared with that of the corresponding Pt(iv) complexes containing the cyclohexane-1R,2R-diamine equatorial ligand. To justify the very good antiproliferative activity (nanomolar IC50), the polarity, lipophilicity, permeability, and cell accumulation of the complexes were studied. Overall, the two series of Pt(iv) complexes showed similar cell penetration properties, being significantly better than that of the Pt(ii) reference compounds. Finally, a representative compound of the whole set of complexes (i.e., that based on cyclohexane-1R,2R-diamine and racemic POA) was tested in vivo on mice bearing Lewis lung carcinoma, showing good tumor growth inhibition with negligible body weight loss.A series of new dinuclear platinum(ii) complexes with the general formula [Pt2(μ-HL)4] (1-4), where H2L is 4-[(5-chloro-2-hydroxy-benzylidene)-amino]-3-R-1,2,4-triazole-5-thione R = H (1), methyl (2), ethyl (3) and propyl (4), were synthesized and characterized. The X-ray crystal structures of 2, 3 and 4 reveal that the two platinum atoms form a paddlewheel core with four chelating triazole ligands as bridges, revealing a radically different structure than those of the traditional anticancer platinum(ii) complexes. These complexes show higher in vitro antiproliferative activity against human liver hepatocellular carcinoma (HepG2) and human breast adenocarcinoma (MCF7) than human lung cancer (A549) and human normal hepatocyte (HL-7702) cell lines. In particular, 3 exhibits antiproliferative activity (IC50 = 5.5 μM) against HepG2 cells comparable to that of cisplatin. Different from the traditional anticancer platinum(ii) complexes with high DNA affinity, 3 binds very weakly to DNA. Upon comparison, it exhibits potent inhibiting activity against protein tyrosine phosphatases 1B (PTP1B, IC50 = 16 μM) through possible binding to its active sites and its binding constant is 5.28 × 104 M-1. The results suggest that the antiproliferative mechanism of 3 against HepG2 cells may be different from that of cisplatin.One-dimensional (1D) selenium and tellurium crystalize in helical chainlike structures and thus exhibit fascinating properties. By performing first-principles calculations, we have researched the linear and nonlinear optical (NLO) properties of 1D Se and Te, and find that both systems exhibit pronounced NLO responses. In particular, 1D Se is found to possess a large second-harmonic generation coefficient with the χ value being up to 7 times larger than that of GaN, and is even several times larger than that of the bulk counterpart. On the other hand, 1D Te also produces significant NLO susceptibility χ which exceeds that of bulk GaN by 5 times. Furthermore, 1D Te is shown to possess a prominent linear electro-optic coefficient rxxx(0). In particular, the Te chain exhibits a large shift current response and the maximum is twice as large as the maximal photovoltaic responses obtained from BaTiO3. Therefore, 1D Se and Te may find potential applications in solar energy conversion, electro-optical switches, and so on. Finally, the much stronger NLO effects of 1D Se and Te are attributed to their one-dimensional structures with high anisotropy, strong covalent bonding and lone-pair electrons. These findings will contribute further to experimental studies and the search for excellent materials with large NLO effects.
SARS-CoV-2 transmission risk generally increases with the proximity of those shedding the virus to those susceptible to infection. Thus, this risk is a function of both the number of people and the area they occupy. However, the latter continues to evade the COVID-19 testing policy.
The aim of this study is to analyze per capita COVID-19 testing data reported for Alabama to evaluate whether testing realignment along population density, rather than density agnostic per capita, would be more effective.
Descriptive statistical analyses were performed for population, density, COVID-19 tests administered, and positive cases for all 67 Alabama counties.
Tests reported per capita appeared to suggest widespread statewide testing. However, there was little correlation (
=0.28,
=.02) between tests per capita and the number of cases. In terms of population density, new cases were higher in areas with a higher population density, despite relatively lower test rates as a function of density.
Increased testing in areas with lower population density has the potential to induce a false sense of security even as cases continue to rise sharply overall.
Increased testing in areas with lower population density has the potential to induce a false sense of security even as cases continue to rise sharply overall.Agricultural non-point source pollution refers that substance such as nitrogen and phosphorus cause water environment pollution through surface runoff and underground leakage in agricultural production activities. Water environment pollution related to agricultural non-point source pollution in the Huaihe River Basin is becoming more and more prominent. Therefore, it is necessary to analyze the characteristic of soil nutrient in cultivated land and explore the spatial variation and influencing factors of soil nutrients at the watershed scale. A total of 239 topsoil samples were collected from the Guo river basin, and the related factors of soil organic matter (SOM), total carbon (TC), total nitrogen (TN), total phosphorous (TP), total potassium (TK) and potential of hydrogen (PH) were studied by using descriptive statistics and geostatistical methods. The results showed that TK and PH were weak variation, while SOM, TC, TN and TP were medium variation. Soil pH, TP, TK, TC and SOM had moderate spatial variability, which was caused by both random factors and structural factors such as soil texture, soil type, fertilization and local ecological restoration management. Soil TN showed a strong spatial correlation, mainly due to soil texture and soil type. If the recommended fertilization amount is still given based on the average value of soil nutrients ignoring the spatial heterogeneity, it will not only affect crop production efficiency and fertilizer utilization, but may also cause greater environmental pollution. This study can provide a theoretical basis for the management of agro-ecological environments throughout the basin area.The kinetic boundary condition (KBC) represents the evaporation or condensation of molecules at the vapor-liquid interface for molecular gas dynamics (MGD). When constructing the KBC, it is necessary to classify molecular motions into evaporation, condensation, and reflection in molecular-scale simulation methods. Recently, a method that involves setting the vapor boundary and liquid boundary has been used for classifying molecules. The position of the vapor boundary is related to the position where the KBC is applied in MGD analyses, whereas that of the liquid boundary has not been uniquely determined. Therefore, in this study, we conducted molecular dynamics simulations to discuss the position of the liquid boundary for the construction of KBCs. We obtained some variables that characterize molecular motions such as the positions that the molecules reached and the time they stayed in the vicinity of the interface. Based on the characteristics of the molecules found from these variables, we investigated the valid position of the liquid boundary.
Website: https://www.selleckchem.com/products/AC-220.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team