Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We compare performance of a polarization insensitive fiber optic parametric amplifier (PI-FOPA), a commercial erbium doped fiber amplifier (EDFA) and a discrete Raman amplifier (DRA) in a 50 km long-reach optical access network transmitting bursts of 10 Gbps signal with traffic density ranged from 5% to 97%. We demonstrate that for the same power budget the PI-FOPA allows for transmission of bursty traffic with density up to 97% while DRA and EDFA are limited to 30% and 15%, respectively. Alternatively, we demonstrate PI-FOPA to allow for 3 dB and 5 dB higher power budget than the DRA and EDFA, respectively, for the worst case scenario of 75% traffic density.We developed a method for directly measuring displacement of a moving surface for use with dynamic or high explosive driven experiments. The technique, called "Modulation Based Ranging" (MBR), overcomes the errors associated with integrating a velocity history of an object undergoing non-radial flow, while also providing the exact displacement of the object with sub 100 µm resolution. A discussion of sources of phase sensitive errors is presented along with a demonstration of the applied corrections. Excellent agreement between MBR and integrated velocity from the Photonic Doppler Velocimetry (PDV) technique was observed when no non-radial flow was present. We then demonstrated the ability of MBR to accurately measure true displacement of a surface subjected to a strong non-radial component.One of the main steps towards large-scale quantum photonics consists of the integration of single photon sources (SPS) with photonic integrated circuits (PICs). For that purpose, the PICs should offer an efficient light coupling and a high preservation of the indistinguishability of photons. Therefore, optimization of the indistinguishability through waveguide design is especially relevant. In this work we have developed an analytical model that uses the Green's Dyadic of a 3D unbounded rectangular waveguide to calculate the coupling and the indistinguishability of an ideal point-source quantum emitter coupled to a photonic waveguide depending on its orientation and position. The model has been numerically evaluated through finite-difference time-domain (FDTD) simulations showing consistent results. The maximum coupling is achieved when the emitter is embedded in the center of the waveguide but somewhat surprisingly the maximum indistinguishability appears when the emitter is placed at the edge of the waveguide where the electric field is stronger due to the surface discontinuity.Magneto-optical traps (MOTs) are widely used for laser cooling of atoms. We have developed a high-flux compact cold-atom source based on a pyramid MOT with a unique adjustable aperture that is highly suitable for portable quantum technology devices, including space-based experiments. The adjustability enabled an investigation into the previously unexplored impact of aperture size on the atomic flux, and optimisation of the aperture size allowed us to demonstrate a higher flux than any reported cold-atom sources that use a pyramid, LVIS, 3D-MOT or grating MOT. We achieved 2.1(1) × 1010 atoms/s of 87Rb with a mean velocity of 32(1) m/s, FWHM of 27.6(9) m/s and divergence of 59(4) mrad. Halving the total optical power to 195 mW caused only a 20% reduction of the flux, and a 30% decrease in mean velocity. Methods to further decrease the velocity as required have been identified. The low power consumption and small size make this design suitable for a wide range of cold-atom technologies.Adaptive optics (AO) is an effective technique for compensating the aberrations in optical systems and restoring their performance for various applications such as image formation, laser processing, and beam shaping. To reduce the controller complexity and extend the compensation capacity from static aberrations to dynamic disturbances, the present study proposes an AO system consisting of a self-built Shack-Hartmann wavefront sensor (SHWS), a deformable mirror (DM), and field programmable gate array (FPGA)-based controllers. This AO system is developed for tracking static and dynamic disturbances and tuning the controller parameters as required to achieve rapid compensation of the incoming wavefront. In the proposed system, the FPGA estimates the coefficients of the eight Zernike modes based on the SHWS with CameraLink operated at 200 Hz. The estimated coefficients are then processed by eight parallel independent discrete controllers to generate the voltage vectors to drive the DM to compensate the aberrations. To have the DM model for controller design, the voltage vectors are identified offline and are optimized by closed-loop controllers. Furthermore, the controller parameters are tuned dynamically in accordance with the main frequency of the aberration as determined by a fast Fourier transform (FFT) process. The experimental results show that the AO system provides a low complexity and effective means of compensating both static aberrations and dynamic disturbance up to 20 Hz.We investigate a novel two-channel grating encoder that can perform simultaneous measurements of six-degree-of-freedom (DOF) motions of two adjacent sub-components of synthetic-aperture optics such as pulse-compression gratings(PCGs) and telescope-primary mirrors. The grating encoder consists of a reading head and two separate gratings, which are attached to the back of the sub-components, respectively. The reading head is constructed such that there two identical optical probes can share the same optical components. The two probes are guided to hit each of the two gratings and can detect six-DOF motions simultaneously and independently. For each probe, the incident beam propagates through both a three-axes grating interferometry module and a three-axes diffraction integrated autocollimator-module, which detects translational and rotational movement, respectively. By combining the two modules it is possible to perform six-DOF measurement for a single point. The common-path configuration of the two probes enable identical responses to environmental variation, which ensures high accuracy.Studying the biogeochemistry of the Southern Ocean using remote sensing relies on accurate interpretation of ocean colour through bio-optical and biogeochemical relationships between quantities and properties of interest. During the Antarctic Circumnavigation Expedition of the 2016/2017 Austral Summer, we collected a spatially comprehensive dataset of phytoplankton pigment concentrations, particulate absorption and particle size distribution and compared simple bio-optical and particle property relationships as a function of chlorophyll a. Similar to previous studies we find that the chlorophyll-specific phytoplankton absorption coefficient is significantly lower than in other oceans at comparable chlorophyll concentrations. This appears to be driven in part by lower concentrations of accessory pigments per unit chlorophyll a as well as increased pigment packaging due to relatively larger sized phytoplankton at low chlorophyll a than is typically observed in other oceans. We find that the contribution of micrnships between bio-optical properties and chlorophyll a in the Southern Ocean are different to other oceans. In addition, distinct bio-optical properties were evident between high and low latitude regions of the Southern Ocean basin. Here we provide a region-specific set of power law functions describing the phytoplankton absorption spectrum as a function of chlorophyll a.We theoretically design and experimentally generate the flexibly modulated Poincaré sphere vector optical field (PS-VOF), which can be constructed by flattening the Poincaré sphere surface. This new kind of PS-VOF provides additional degrees of freedom to modulate the spatial structure of polarization based on Poincaré sphere. The focal property of the PS-VOF is further studied, and we focus on studying the polarization coverage of the Poincaré sphere in the focal plane. In focusing process, the conversion and annihilation of spin angular momentum are presented. In addition, when the proportion of right-handed polarizations from the northern hemisphere of the Poincaré sphere satisfies Golden ratio (0.618) in the input plane, a full PS-VOF with high quality can be achieved in the focal plane. We hope this study of PS-VOF in both input and focal planes can enrich the family of VOFs, provide a new avenue in studying VOFs based on the Poincaré sphere, and can be potentially applied in the regions with sensitivity to polarizations.Optical vortex beams (VBs) possessing helical phase-front have attracted considerable attention in multiplexing communication for their orthogonal orbital angular momentum (OAM) modes. However, the mode-crosstalk and signal jitter caused by turbulence fluctuation are two main challenges in OAM multiplexing communication. Here, we introduce an intra-symbol frequency-domain averaging technology (ISFA) for turbulence mitigation. By equalizing the distorted multiplexing signals, ISFA mitigates the amplitude and phase jitter of received signals without adding system complexity and information redundancy. The experimental results show that VBs are successfully demultiplexed, and the transmission rate reaches 48 Gbit/s. After ISFA, the bit-error-rate of QPSK-OFDM signals is reduced from 1.10 × 10-3 to 6.31 × 10-4, and the error-vector-magnitude (EVM) is reduced from 31.69% to 26.29% under the turbulence strength of Cn2 = 1×10-13m-2/3 and equivalent transmission distance of 200 m. By combining ISFA with MIMO diversity gain, the EVM can be further reduced from 46.70% to 26.70%. These indicate that ISFA is available for turbulence mitigation and compatible with MIMO technology, which may have perspective potential in improving the performance of OAM multiplexing communication.The reported dual-band asymmetric transmission is usually an effect of mutual polarization conversion, where one polarized wave is converted to its cross-polarization in the first band while the other polarized wave is converted to its cross-polarization in the second band. In this work, we experimentally demonstrate a dual-band asymmetric transmission effect only for one-polarized linear wave in the terahertz band. It is measured that the cross-polarization transmission coefficient Tyx reaches two peaks of 0.715 and 0.548 at the frequency of 0.74 THz and 1.22 THz, respectively. While the transmission coefficient Txy is lower than 0.2 in the wide-band from 0.5 THz to 1.5 THz. ML364 cost Firstly, the multiple interference model is used to discuss the physical mechanism of the dual-band asymmetric transmission. However, the second band of the calculated spectrum is offset due to the strong near field coupling between the two metal layers. The coupled-mode theory is then introduced and the fitting result of the coupled-mode theory is in good agreement with that of the experiment in the two bands. This research would provide new theoretical instructions in designing and analyzing multiband asymmetric transmission in the terahertz, microwave or the optical bands.Herein we report two cases of palliative radiation therapy for retroperitoneal lymph node metastasis (RLNM) causing annoying leg edema in castration-resistant prostate cancer (CRPC) patients in the terminal phase. [Case 1] A 53-year-oldman with T3bN0M1a prostate cancer was treated with androgen deprivation therapy (ADT). After 9 months, he developed CRPC with local progression that required local radiation therapy (75.6 Gy/36 fr). Disease progression after life-prolonging therapies was followed only by best supportive care (BSC). Radiation therapy (40 Gy/20 fr) was performed for the RLNM due to which he suffered from painful leg edema. Although the painful leg edema was alleviated, he died of prostate cancer after 2 months. [Case 2] A 71-year-oldman with T4N1M1a prostate cancer was treated with ADT plus bicalutamide. After 10 months, he developed CRPC. He was treated with only BSC for disease progression after life-prolonging therapies. He had RLNM that caused painful leg edema, making it difficult for him to stretch and lie on his back.
Website: https://www.selleckchem.com/products/ml364.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team