Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Second, tapping of large biobanks of therapeutic drug monitoring data allows to conduct high-powered retrospective studies that can validate the clinical importance of genetic variants, which are currently incompletely characterized. Combined, we are confident that these methods will improve the accuracy of drug response predictions and will narrow the gap between variant identification and its utilization for clinical decision-support. © The Author(s) 2020.In this study, we examined students' natural studying behaviors in massive, open, online course (MOOC) on introductory psychology. We found that, overall, distributing study across multiple sessions-increasing spacing-was related to increased performance on end-of-unit quizzes, even when comparing the same student across different time-points in the course. Moreover, we found important variation on who is more likely to engage in spaced study and benefit from it. Students with higher ability and students who were more likely to complete course activities were more likely to space their study. Spacing benefits, however, were largest for the lower-ability students and for those students who were less likely to complete activities. These results suggest that spaced study might work as a buffer, improving performance for low ability students and those who do not engage in active practices. This study highlights the positive impact of spacing in real-world learning situations, but more importantly, the role of self-regulated learning decisions in shaping the impact of spaced practice. Staurosporine chemical structure © The Author(s) 2020.Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "Complementary Exposure" pattern the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2. © The Author(s) 2020.African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. ASFV is primarily replicated in the cytoplasm of pig macrophages, which is oxidative and caused constant damage to ASFV genome. ASFV AP endonuclease (AsfvAP) catalyzes DNA cleavage reaction at the abasic site and is a key enzyme of ASFV base excision repair (BER) system. Although it plays an essential role in ASFV survival in host cells, the basis underlying substrate binding and cleavage by AsfvAP remains unclear. Here, we reported the structural and functional studies of AsfvAP, showing that AsfvAP adopts a novel DNA-binding mode distinct from other APs. AsfvAP possesses many unique structural features, including one narrower nucleotide-binding pocket at the active site, the C16-C20 disulfide bond-containing region, and histidine-rich loop. As indicated by our mutagenesis, in vitro binding and cleavage assays, these features are important for AsfvAP to suit the acidic and oxidative environment. Owing to their functional importance, these unique features could serve as targets for designing small molecule inhibitors that could disrupt the repair process of ASFV genome and help fight against this deadly virus in the future. © The Author(s) 2020.N1-methyladenosine (m1A) is one of the important post-transcriptional modifications in RNA and plays an important role in promoting translation or decay of m1A-methylated messenger RNA (mRNA), but the "reader" protein and the exact biological role of m1A remain to be determined. Here, we identified that nine potential m1A "reader" proteins including YTH domain family and heterogeneous nuclear ribonucleoprotein by mass spectrometry, and among them, YTH domain-containing protein 3 (YTHDF3), could bind directly to m1A-carrying RNA. YTHDF3 was then identified to negatively regulate invasion and migration of trophoblast. Mechanistically, we found that the m1A "reader" YTHDF3 bound to certain m1A-methylated transcripts, such as insulin-like growth factor 1 receptor (IGF1R), with the combination of iCLIP-seq (individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation high-throughput sequencing) and m1A-seq. Furthermore, YTHDF3 could promote IGF1R mRNA degradation and thus inhibit IGF1R protein expression along with its downstream matrix metallopeptidase 9 signaling pathway, consequently decreasing migration and invasion of trophoblast. Thus, we demonstrated that YTHDF3 as an m1A reader decreased invasion and migration of trophoblast by inhibiting IGF1R expression. Our study outlines a new m1A epigenetic way to regulate the trophoblast activity, which suggests a novel therapeutic target for trophoblast-associated pregnancy disorders. © The Author(s) 2020.Skin aging is driven by intrinsic and extrinsic factors impacting on skin functionality with progressive age. One factor of this multifaceted process is cellular senescence, as it has recently been identified to contribute to a declining tissue functionality in old age. In the skin, senescent cells have been found to markedly accumulate with age, and thus might impact directly on skin characteristics. Especially the switch from young, extracellular matrix-building fibroblasts to a senescence-associated secretory phenotype (SASP) could alter the microenvironment in the skin drastically and therefore promote skin aging. In order to study the influence of senescence in human skin, 3D organotypic cultures are a well-suited model system. However, only few "aged" skin- equivalent (SE) models are available, requiring complex and long-term experimental setups. Here, we adapted a previously published full-thickness SE model by seeding increasing ratios of stress-induced premature senescent versus normal fibroblasts into the collagen matrix, terming these SE "senoskin". Immunohistochemistry stainings revealed a shift in the balance between proliferation (Ki67) and differentiation (Keratin 10 and Filaggrin) of keratinocytes within our senoskin equivalents, as well as partial impairment of skin barrier function and changed surface properties. Monitoring of cytokine levels of known SASP factors confirmedly showed an upregulation in 2D cultures of senescent cells and at the time of seeding into the skin equivalent. Surprisingly, we find a blunted response of cytokines in the senoskin equivalent over time during 3D differentiation. © The Author(s) 2020.Context Seventy-five percent of incarcerated women are of reproductive age, most of whom are at-risk for unintended pregnancy. Women who are incarcerated come disproportionately from socioeconomically disadvantaged backgrounds and often lack access to desired reproductive health care. While the carceral system provides a unique opportunity to fill this gap, a better understanding of the contraceptive needs, desires, and plans of incarcerated women is needed to optimize health care provision within the carceral system. A review of current contraceptive services available to women inmates may both identify model care programs and shed light on areas for improvement. Evidence acquisition PubMed electronic database used to identify relevant articles published between January 1975 and September 2019 using a systematic review method. Results Twenty-five articles met the inclusion criteria and answered four key questions surrounding contraception in the carceral system. Most articles (48%) represented scientific research. Other publications identified by this review were expert commentaries, policy briefings, guidance and recommendations reports, and law and bioethics reviews. Conclusions Incarcerated women desire access to standard and emergency contraception from carceral health care systems. Knowledgeable family planning practitioners providing patient-centered and trauma-informed care and public health interventions linking newly released inmates to community clinics can help alleviate inmates' concerns regarding initiating desired contraception while incarcerated. © The Author(s) 2020.MIRAGE syndrome is a recently identified disorder characterized by myelodysplasia, infection, restriction of growth, adrenal hypoplasia, genital phenotypes, and enteropathy. It is caused by a gain-of-function variant in the SAMD9 gene, but there is limited knowledge regarding the genotype-phenotype correlation. We herein report a Japanese patient with MIRAGE syndrome carrying a novel de novo heterozygous missense variant in the SAMD9 gene (c.4435 G > T; p.Ala1479Ser). © The Author(s) 2020.Huanglongbing (HLB) is a disease that has devastated the Florida citrus industry, threatens the entire U.S. citrus industry, and globally is rapidly spreading. Florida's citrus production is 90% sweet orange, which is quite sensitive to HLB. The heavy reliance on sweet orange for Florida citrus production makes the industry especially vulnerable to diseases that are damaging to this type of citrus. Furthermore, 90% of Florida oranges are used in producing orange juice that is defined by a federal regulation known as the "orange juice standard", specifying that at least 90% of "orange juice" must be derived from Citrus sinensis. Genomic analyses definitively reveal that sweet orange is not a true species, but just one of many introgression hybrids of C. reticulata and C. maxima, with phenotypic diversity resulting from accumulated mutations in this single hybrid, the "sweet orange". No other fruit industry is limited by law to such a narrow genetic base. Fortunately, there are new citrus hybrids displaying reduced sensitivity to HLB, and in some cases they produce juice, alone or in blends, that consumers would recognize as "orange juice". Reconsidering current regulations on orange juice standards may permit use of such hybrids in "orange juice", providing greater latitude for commercialization of these hybrids, leading to higher-quality orange juice and a more sustainable Florida orange juice industry. © The Author(s) 2020.
Here's my website: https://www.selleckchem.com/products/Staurosporine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team