Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Testing the samples showed the coincidence of the results for the developed lateral flow assay and for commercial ELISA kit.In this study, the drying characteristics of fish, chicken and beef samples were investigated using microwave drying method. Each sample was dried using four different microwave powers of 90, 180, 270 and 360 W. Drying time decreased as microwave power increased. Fish fillets were dried in a shorter time than chicken and beef samples. The experimentally obtained data were fitted to seven drying models. The logarithmic and Midilli et al. click here models were found to be the most appropriate in describing microwave drying behavior of meat samples. Effective moisture diffusion coefficients were computed and found between 1.74 × 10-7 and 16.4 × 10-7 m2 s-1 for all the meat samples. The activation energies were found as 14.59 W/g, 79.147 W/g and 140.81 W/g, for chicken, fish and beef meat samples, respectively. The highest and lowest energy consumptions were found in the chicken drying process at 90 W (0.045 kWh) and fish drying process at 360 W (0.018 kWh), respectively. The microwave power level are the main factors affecting the color change of material during drying process, where the highest and the lowest ΔE is obtained t chicken and fish samples, respectively.Certain substances referred to as allergens, induce hypersensitivity (allergic reactions) which normally are considered to be innocuous, are small in size and incite IgE response. This study was focused to predict the putative allergens from other Cucurbitaceae family members using computational approach by analyzing the already reported allergens of the same family. The four reported allergens Cuc m 1, Cuc m 2, Cuc m 3 and Citr I 2 of Cucurbitaceae family were obtained from International Union of Immunological Societies, in which three were from Cucumis melo (Muskmelon) and one from Citrullus lanatus (Watermelon) respectively. BlastP analysis reported 44 similar sequences to these allergens from other members of Cucurbitaceae family namely Cucurbita moschata, Cucurbita pepo and Cucurbita maxima. The allergenicity of these sequences was predicted using AlgPred tool in which it revealed 26 protein sequences as putative allergens. These selected sequences were further analyzed for their physicochemical properties using ProtParam tool in which 13 sequences were found to satisfy the required parameters, and therefore further analyzed by AllerMatch™ and AllergenOnline tools to check the Codex Alimentarius rules for allergens. Finally, 13 sequences that were selected were structurally analyzed for similarity using PROMALS3D tool and phylogenetic relationship was established with the reported allergens using MEGA-X software. It was concluded that 13 sequences from Cucurbitaceae family belonging to different species of Pumpkin showed potential allergenicity based on the computational analysis that possibly can play a role in allergies and cross reactivity.Solid residues obtained after essential oil extraction from Cymbopogon winterianus Jowitt (Java citronella) was explored as a potential source of phenolics/antioxidant. Both the non-distilled plant materials and their solid residues were extracted with Soxhlet extraction method using solvents of various polarity viz. petroleum ether, chloroform, ethyl acetate, acetone, ethanol, methanol, water and various combination of (50% and 75%) of methanol, ethanol, and acetone in water. Different antioxidant assays like 2,2-diphenyl-1- picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), superoxide anion (SO) radical scavenging assay, ferric-reducing antioxidant power (FRAP) and iron chelating ability along with total phenol (TPC) and flavonoid content (TFC) was measured to evaluate the extract. Compared to distilled materials, the non-distilled plant materials had significantly higher TPC/TFC content and also exhibited higher antioxidant activities. 50% aqueous methanol showed the highest extractive yield, whereas 75% aqueous methanol exhibited the highest TPC and TFC content. The 50% or 75% aqueous methanolic extract also exhibited the highest DPPH, ABTS and SO scavenging activity and ferric-reducing antioxidant power activity. However, ethyl acetate and 75% aqueous acetone extract of non-distilled and distilled plant materials, respectively showed the highest iron chelating activity. The half maximal effective concentration (IC50 = µg/mL) for DPPH, ABTS, SO and metal chelating ability in non-distilled plant extract ranged from 64-387, 92-761, 285-870, and 164-924, respectively, and corresponding value of distilled materials ranged from 144-865, 239-792, 361-833 and 374-867, respectively. The EC50 (µg/mL) for FRAP assay ranged from 118-840 and 151-952 for non-distilled and distilled materials, respectively. The findings of this study indicate the potential of these by-products as a natural antioxidants source.The purpose of the current research was to determine optimal situation by applying Simplex lattice mixture design for the formulation of prebiotic sucrose-free milk chocolate. Chocolate samples were prepared using two different sugar alcohols containing xylitol and maltitol along with galactooligosaccharide as prebiotic substance. The effects of sugar alcohols and prebiotic blends on rheological attributes and some physical characteristics were assessed. The outcomes represented the high coefficient of determination (≥ 90%) of fitted models. The optimization of the variables indicated that using 20.857 g maltitol, 7.131 g xylitol and 5.012 g galactooligosaccharide generated the optimized chocolate with the highest desirability (1.00) without undesirable changes in the rheological and physical properties. Furthermore, the optimum formulation was prepared to validate the optimum model. The sensory evaluation of the optimized formulation of chocolate pleased the consumer needs.In this study, Raman spectroscopy has been utilized to characterize buffalo, cow and goat fat samples by using laser wavelengths at 532 and 785 nm as excitation sources. It has been observed that Raman spectra of cow fats contain beta-carotene at 1006, 1156 and 1520 cm-1, which are absent in buffalo and goat fats. The Raman bands at 1060, 1080, 1127 and 1440 cm-1 represent the saturated fatty acids, and their concentration is found relatively higher in buffalo fats than cow and goat. Similarly, the Raman band at 1650 cm-1 represent conjugated linoleic acid (CLA) which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman band at 1267 cm-1 represent unsaturated fatty acids, which shows its relatively higher concentration in goat fats than cow and buffalo. The Raman bands at 838, 870 and 1060 cm-1 depict relatively higher concentration of vitamin D in buffalo fats than cow and goat. Principal component analysis has been applied to highlight the differences among three fat types which based upon the concentration of fatty acids, CLA and vitamin D.
Homepage: https://www.selleckchem.com/products/lw-6.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team