Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Patients affected by tumours with hypoglottic extension and eligible for OPHL type II should be preoperatively informed about the possibility of an intraoperative switch towards OPHL type III.
The recent introduction of 3D exoscopic surgery has allowed interesting technical improvements in head and neck surgery resulting in technical solutions that are also applicable to neck dissection. The aim is to replace robotic surgery while minimising the costs of the procedure.
Based on these considerations, we conducted a preclinical investigation in the cadaver lab focused on approaching conventional neck dissection using a retroauricular incision, and evalute the applications and usefulness of the Storz 3D Exoscopic System at different stages of the surgical procedure. The acronym RAND-3D (3D exoscopic surgery) was coined to describe the application of this optical tool in neck dissection.
The current study in the cadaver lab indicates that RAND-3D is an acceptable alternative operating technique in performing neck dissection by a retroauricular approach. Technically feasible and safe, this technique assures a complete compartment-oriented dissection without damaging major vascular or nervous structures.
This approach can be used in selected cases with a clear cosmetic benefit and represents a valid alternative to endoscopic- and robotic-assisted neck dissection.
This approach can be used in selected cases with a clear cosmetic benefit and represents a valid alternative to endoscopic- and robotic-assisted neck dissection.
The aim of this study is to focus attention on obstructive sleep apnoea hypopnoea syndrome (OSHAS) as a sequela of non-surgical treatments of selected head and neck cancer (HNca), sharing our experience in drug-induced sleep endoscopy (DISE). To the best of our knowledge, this is the first study that documents dynamic anatomical and functional alterations during sleep in irradiated OSAHS patients by DISE.
A retrospective study of patients affected by OSAHS referring to our department from January 2018 to December 2019 was carried out. Inclusion criteria were patients who underwent radiation or chemo-radiation for HNca affecting upper airways that presented sleep-related breathing disorders after treatment.
6 patients with moderate to severe OSAHS and a clinical story of previous non-surgical treatment for an HNca were enrolled. DISE showed in all patients typical anatomical alterations observed in irradiated individuals. Four patients were treated with continuous positive airway pressure, while 2 subjects were treated with tailored minimal invasive surgery without post-operative complications.
Our results suggest that minimal invasive surgical treatments can be a good therapeutic option in very selected patients with post-irradiation iatrogenic OSAHS.
Our results suggest that minimal invasive surgical treatments can be a good therapeutic option in very selected patients with post-irradiation iatrogenic OSAHS.
Deep neck space infections (DNSIs) are a group of infective suppurative diseases involving deep neck spaces and cervical fascia. Necrotising and septic evolutions are rare, but severe complications can dramatically affect the prognosis and should be promptly managed. Clinical examination often has low sensitivity, although instrumental diagnosis may delay te treatment. We investigated two laboratory tools, LRINEC (Laboratory Risk Indicator for the Necrotizing fasciitis) and NLR (neutrophil to lymphocyte ratio), in the expectation to find a rapidly available predictive indicator that may help in distinguishing necrotising complications and/or systemic septic involvement.
A retrospective observational cohort study was performed on 118 patients who had underwent surgical treatment for DNSIs at our Surgical Unit. LRINEC, NLR and the product LRINEC x NLR were calculated.
Statistical analysis showed that these scores may have utility in rapidly predicting the risk of necrotising fasciitis and systemic involvement at an early diagnostic stage.
Further studies with a larger cohort may be necessary in order to increase the sensitivity and specificity.
Further studies with a larger cohort may be necessary in order to increase the sensitivity and specificity.Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks1-6 have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic metre, and it is a substantial challenge to enable these clocks to operate in field environments, which requires the ruggedization and miniaturization of the atomic reference and clock laser along with their supporting lasers and electronics4,7,8,9. In terms of the clock laser, prior laboratory demonstrations of optical clocks have relied on the exceptional performance gained through stabilization using bulk cavities, which unfortunately necessitates the use of vacuum and also renders the laser susceptible to vibration-induced noise. Here, using a stimulated Brillouin scattering laser subsystem that has a reduced cavity volume and operates without vacuum, we demonstrate a promising component of a portable optical atomic clock architecture. We interrogate a 88Sr+ ion with our stimulated Brillouin scattering laser and achieve a clock exhibiting short-term stability of 3.9 × 10-14 over one second-an improvement of an order of magnitude over state-of-the-art microwave clocks. This performance increase within a potentially portable system presents a compelling avenue for substantially improving existing technology, such as the global positioning system, and also for enabling the exploration of topics such as geodetic measurements of the Earth, searches for dark matter and investigations into possible long-term variations of fundamental physics constants10-12.One of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons3-6 and so high-quality measurements exist only for hadrons containing up and down quarks7. Here we demonstrate that measuring correlations in the momentum space between hadron pairs8-12 produced in ultrarelativistic proton-proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of proton-omega baryon correlations, the effect of the strong interaction for this hadron-hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations13,14. The large number of hyperons identified in proton-proton collisions at the LHC, together with accurate modelling15 of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.The Paris Agreement calls for a cooperative response with the aim of limiting global warming to well below two degrees Celsius above pre-industrial levels while reaffirming the principles of equity and common, but differentiated responsibilities and capabilities1. Although the goal is clear, the approach required to achieve it is not. Cap-and-trade policies using uniform carbon prices could produce cost-effective reductions of global carbon emissions, but tend to impose relatively high mitigation costs on developing and emerging economies. Huge international financial transfers are required to complement cap-and-trade to achieve equal sharing of effort, defined as an equal distribution of mitigation costs as a share of income2,3, and therefore the cap-and-trade policy is often perceived as infringing on national sovereignty2-7. Here we show that a strategy of international financial transfers guided by moderate deviations from uniform carbon pricing could achieve the goal without straining either the economieg the carbon price spread. We also identify risks and adverse consequences of carbon price differentiation due to market distortions that can undermine environmental sustainability targets8,9. Quantifying the advantages and risks of carbon price differentiation provides insight into climate and sector-specific policy mixes.The control of molecules is key to the investigation of quantum phases, in which rich degrees of freedom can be used to encode information and strong interactions can be precisely tuned1. Inelastic losses in molecular collisions2-5, however, have greatly hampered the engineering of low-entropy molecular systems6. So far, the only quantum degenerate gas of molecules has been created via association of two highly degenerate atomic gases7,8. Here we use an external electric field along with optical lattice confinement to create a two-dimensional Fermi gas of spin-polarized potassium-rubidium (KRb) polar molecules, in which elastic, tunable dipolar interactions dominate over all inelastic processes. Direct thermalization among the molecules in the trap leads to efficient dipolar evaporative cooling, yielding a rapid increase in phase-space density. At the onset of quantum degeneracy, we observe the effects of Fermi statistics on the thermodynamics of the molecular gas. These results demonstrate a general strategy for achieving quantum degeneracy in dipolar molecular gases in which strong, long-range and anisotropic dipolar interactions can drive the emergence of exotic many-body phases, such as interlayer pairing and p-wave superfluidity.Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. 2',3'-cGAMP datasheet We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain-a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research.
Here's my website: https://www.selleckchem.com/products/2-3-cgamp.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team