NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Decreased growth of crazy dirt bacterias after fifteen years involving transplant-induced heating inside a montane meadow.
Finally, we discuss the open issues and potential trends in this promising field.Motor imagery (MI) brain-machine interfaces (BMIs) enable us to control machines by merely thinking of performing a motor action. Practical use cases require a wearable solution where the classification of the brain signals is done locally near the sensor using machine learning models embedded on energy-efficient microcontroller units (MCUs), for assured privacy, user comfort, and long-term usage. In this work, we provide practical insights on the accuracy-cost trade-off for embedded BMI solutions. Our multispectral Riemannian classifier reaches 75.1% accuracy on a 4-class MI task. The accuracy is further improved by tuning different types of classifiers to each subject, achieving 76.4%. We further scale down the model by quantizing it to mixed-precision representations with a minimal accuracy loss of 1% and 1.4%, respectively, which is still up to 4.1% more accurate than the state-of-the-art embedded convolutional neural network. We implement the model on a low-power MCU within an energy budget of merely 198 μJ and taking only 16.9 ms per classification. Classifying samples continuously, overlapping the 3.5 s samples by 50% to avoid missing user inputs allows for operation at just 85 μW. Compared to related works in embedded MI-BMIs, our solution sets the new state-of-the-art in terms of accuracy-energy trade-off for near-sensor classification.In this work, a system for controlling Functional Electrical Stimulation (FES) has been experimentally evaluated. The peculiarity of the system is to use an event-driven approach to modulate stimulation intensity, instead of the typical feature extraction of surface ElectroMyoGraphic (sEMG) signal. To validate our methodology, the system capability to control FES was tested on a population of 17 subjects, reproducing 6 different movements. Limbs trajectories were acquired using a gold standard motion tracking tool. The implemented segmentation algorithm has been detailed, together with the designed experimental protocol. A motion analysis was performed through a multiparametric evaluation, including the extraction of features such as the trajectory area and the movement velocity. The obtained results show a median cross-correlation coefficient of 0.910 and a median delay of 800 ms, between each couple of voluntary and stimulated exercise, making our system comparable w.r.t. state-of-the-art works. Furthermore, a 97.39% successful rate on movement replication demonstrates the feasibility of the system for rehabilitation purposes.Identification of DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) from the primary sequences is essential for further explor-ing protein-nucleic acid interactions. Previous studies have shown that machine-learning-based methods can efficiently identify DBPs or RBPs. However, the information used in these methods is slightly unitary, and most of them only can predict DBPs or RBPs. In this study, we proposed a computational predictor iDRBP-EL to identify DNA- and RNA- binding proteins, and introduced hierarchical ensemble learn-ing to integrate three level information. The method can integrate the information of different features, machine learning algorithms and data into one multi-label model. The ablation experiment showed that the fusion of different information can improve the prediction perfor-mance and overcome the cross-prediction problem. Experimental results on the independent datasets showed that iDRBP-EL outperformed all the other competing methods. Moreover, we established a user-friendly webserver iDRBP-EL (http//bliulab.net/iDRBP-EL), which can predict both DBPs and RBPs only based on protein sequences.Long non-coding RNAs (lncRNAs) play vital regulatory roles in many human complex diseases, however, the number of validated lncRNA-disease associations is notable rare so far. How to predict potential lncRNA-disease associations precisely through computational methods remains challenging. In this study, we proposed a novel method, LDVCHN (LncRNA-Disease Vector Calculation Heterogeneous Networks), and also developed the corresponding model, HEGANLDA (Heterogeneous Embedding Generative Adversarial Networks LncRNA-Disease Association), for predicting potential lncRNA-disease associations. In HEGANLDA, the graph embedding algorithm (HeGAN) was introduced for mapping all nodes in the lncRNA-miRNA-disease heterogeneous network into the low-dimensional vectors which severed as the inputs of LDVCHN. HEGANLDA effectively adopted the XGBoost (eXtreme Gradient Boosting) classifier, which was trained by the low-dimensional vectors, to predict potential lncRNA-disease associations. The 10-fold cross-validation method was utilized to evaluate the performance of our model, our model finally achieved an area under the ROC curve of 0.983. According to the experiment results, HEGANLDA outperformed any one of five current state-of-the-art methods. To further evaluate the effectiveness of HEGANLDA in predicting potential lncRNA-disease associations, both case studies and robustness tests were performed and the results confirmed its effectiveness and robustness. The source code and data of HEGANLDA are available at https//github.com/HEGANLDA/HEGANLDA.One of the main obstacles of Photodynamic Therapy (PDT) to damage and destroy abnormal cells is that most photosensitizers (Ps) have a highly hydrophobic nature with a tendency to aggregate in aqueous solutions and the non-specificity towards target cells. Nanotechnology proposes new tactics for the development of monomeric Ps nanotransporters and active targeting molecules with the use of biodegradable polymeric nanoparticles to improve the specificity towards target cells. The goal of this work was to optimize the synthesis of chitosan polymeric nanoparticles conjugated with protoporphyrin IX and vitamin B9 (CNPs-PpIX-B9) by the ionic gelation method from the established protocol previously carried out by our laboratory with 1.74 times fold of efficiency. They were characterized by ultraviolet-visible and infrared spectroscopy and transmission electron microscopy. The optimal conditions for CNPs synthesis was found at pH 5.11. The nanoconjugate shapes were more homogeneous and the average size resulted in 19.92 nm ± 7.52 nm. CNPs-PpIX-B9 were stable after the filter sterilization method and highly thermostable.Demyelination of neurons can compromise the communication performance between the cells as the absence of myelin attenuates the action potential propagated through the axonal pathway. In this work, we propose a hybrid experimental and simulation model for analyzing the demyelination effects on neuron communication. The experiment involves locally induced demyelination using Lysolecithin and from this, a myelination index is empirically estimated from analysis of cell images. This index is then coupled with a modified Hodgkin-Huxley computational model to simulate the resulting impact that the de/myelination processes has on the signal propagation along the axon. The effects of signal degradation and transfer of neuronal information are simulated and quantified at multiple levels, and this includes (1) compartment per compartment of a single neuron, (2) bipartite synapse and the effects on the excitatory post-synaptic potential, and (3) a small network of neurons to understand how the impact of de/myelination has on the whole network. By using the myelination index in the simulation model, we can determine the level of attenuation of the action potential concerning the myelin quantity, as well as the analysis of internal signalling functions of the neurons and their impact on the overall spike firing rate. We believe that this hybrid experimental and in silico simulation model can result in a new analysis tool that can predict the gravity of the degeneration through the estimation of the spiking activity and vice-versa, which can minimize the need for specialised laboratory equipment needed for single-cell communication analysis.Limb motion decoding is an important part of brain-computer interface (BCI) research. Among the limb motion, sign language not only contains rich semantic information and abundant maneuverable actions but also provides different executable commands. However, many researchers focus on decoding the gross motor skills, such as the decoding of ordinary motor imagery or simple upper limb movements. Here we explored the neural features and decoding of Chinese sign language from electroencephalograph (EEG) signal with motor imagery and motor execution. Sign language not only contains rich semantic information, but also has abundant maneuverable actions, and provides us with more different executable commands. In this paper, twenty subjects were instructed to perform movement execution and movement imagery based on Chinese sign language. PF-04965842 in vivo Seven classifiers are employed to classify the selected features of sign language EEG. L1 regularization is used to learn and select features that contain more information from the mean, power spectral density, sample entropy, and brain network connectivity. The best average classification accuracy of the classifier is 89.90% (imagery sign language is 83.40%). These results have shown the feasibility of decoding between different sign languages. The source location reveals that the neural circuits involved in sign language are related to the visual contact area and the pre-movement area. Experimental evaluation shows that the proposed decoding strategy based on sign language can obtain outstanding classification results, which provides a certain reference value for the subsequent research of limb decoding based on sign language.Multi-modal retinal image registration plays an important role in the ophthalmological diagnosis process. The conventional methods lack robustness in aligning multi-modal images of various imaging qualities. Deep-learning methods have not been widely developed for this task, especially for the coarse-to-fine registration pipeline. To handle this task, we propose a two-step method based on deep convolutional networks, including a coarse alignment step and a fine alignment step. In the coarse alignment step, a global registration matrix is estimated by three sequentially connected networks for vessel segmentation, feature detection and description, and outlier rejection, respectively. In the fine alignment step, a deformable registration network is set up to find pixel-wise correspondence between a target image and a coarsely aligned image from the previous step to further improve the alignment accuracy. Particularly, an unsupervised learning framework is proposed to handle the difficulties of inconsistent modalities and lack of labeled training data for the fine alignment step. The proposed framework first changes multi-modal images into a same modality through modality transformers, and then adopts photometric consistency loss and smoothness loss to train the deformable registration network. The experimental results show that the proposed method achieves state-of-the-art results in Dice metrics and is more robust in challenging cases.Stereo matching disparity prediction for rectified image pairs is of great importance to many vision tasks such as depth sensing and autonomous driving. Previous work on the end-to-end unary trained networks follows the pipeline of feature extraction, cost volume construction, matching cost aggregation, and disparity regression. In this paper, we propose a deep neural network architecture for stereo matching aiming at improving the first and second stages of the matching pipeline. Specifically, we show a network design inspired by hysteresis comparator in the circuit as our attention mechanism. Our attention module is multiple-block and generates an attentive feature directly from the input. The cost volume is constructed in a supervised way. We try to use data-driven to find a good balance between informativeness and compactness of extracted feature maps. The proposed approach is evaluated on several benchmark datasets. Experimental results demonstrate that our method outperforms previous methods on SceneFlow, KITTI 2012, and KITTI 2015 datasets.
Website: https://www.selleckchem.com/products/pf-04965842.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.