Notes
![]() ![]() Notes - notes.io |
In situ cryo-electron tomography of cryo-focused ion beam (cryo-FIB) milled cells enables the study of cellular organelles in unperturbed conditions and close to the molecular resolution. However, due to the crowdedness of the cellular environment, the identification of individual macromolecular complexes either on organelles or inside the cytosol in cryo-electron tomograms is challenging. Cryo-correlative light and electron microscopy (cryo-CLEM) employs a fluorescently labeled feature of interest imaged by cryo-light microscopy that is correlated to cryo-electron microscopy maps of cryo-FIB milled lamellae using correlation markers discernable by both imaging methods. Here, we provide a protocol for a post-correlation on-lamella cryo-CLEM approach for localization of fluorescently labeled organelles of interest in cryo-lamellae after cryo-FIB milling and tomography of adherent plunge frozen cells.The combination of super-resolution fluorescence microscopy and electron microscopy at ambient temperatures has become an established technique and a broad variety of modalities are now available to the cell biology community. In contrast, correlative cryogenic super-resolution fluorescence and electron microscopy (super-resolution cryo-CLEM) is just emerging. Aside from technical challenges, one of the major issues is the risk of devitrification of the specimen caused by the laser intensities required for super-resolution imaging. Cryo-SOFI (cryogenic super-resolution optical fluctuation imaging) allows the reconstruction of super-resolution images at particularly low laser intensities. It is fully compatible with the standard sample preparation for cryogenic electron microscopy (cryo-EM) and fairly easy to implement in any standard cryogenic fluorescence microscope.Rapidly changing features in an intact biological sample are challenging to efficiently trap and image by conventional electron microscopy (EM). For example, the model organism C. elegans is widely used to study embryonic development and differentiation, yet the fast kinetics of cell division makes the targeting of specific developmental stages for ultrastructural study difficult. We set out to image the condensed metaphase chromosomes of an early embryo in the intact worm in 3-D. see more To achieve this, one must capture this transient structure, then locate and subsequently image the corresponding volume by EM in the appropriate context of the organism, all while minimizing a variety of artifacts. In this methodological advance, we report on the high-pressure freezing of spatially constrained whole C. elegans hermaphrodites in a combination of cryoprotectants to identify embryonic cells in metaphase by in situ cryo-fluorescence microscopy. The screened worms were then freeze substituted, resin embedded and further prepared such that the targeted cells were successfully located and imaged by focused ion beam scanning electron microscopy (FIB-SEM). We reconstructed the targeted metaphase structure and also correlated an intriguing punctate fluorescence signal to a H2B-enriched putative polar body autophagosome in an adjacent cell undergoing telophase. By enabling cryo-fluorescence microscopy of thick samples, our workflow can thus be used to trap and image transient structures in C. elegans or similar organisms in a near-native state, and then reconstruct their corresponding cellular architectures at high resolution and in 3-D by correlative volume EM.Many areas of biology have benefited from advances in light microscopy (LM). However, one limitation of the LM approach is that numerous critically important aspects of subcellular machineries are well beyond the resolution of conventional LM. For studying these, electron microscopy (EM) remains the technique of choice to visualize and identify macromolecules at the ultrastructural level. The most powerful approach is combining both techniques, LM and EM (i.e., to apply correlative light/electron microscopy, CLEM) to image exactly the same region of interest. This combination allows, for example, to immuno-localize proteins by LM and then to visualize the ultrastructural context of the same region of the sample. However, the identification and correlation of the regions of interest (ROIs) at the levels of LM and EM remains a major challenge, mostly due to the difficulties with correlation along the Z-axis for both modalities. In this chapter, we address this difficulty and describe an approach for performing CLEM in tissue samples using marks from near-infrared branding as indicators of a ROI, and then using serial block face-scanning electron microscopy (SBF-SEM) to identify and approach this ROI. Once a ROI has been approached, serial sections are collected on grids for high-resolution imaging by transmission EM, and subsequent correlation with LM images showing labeled proteins.The application of both fluorescence and electron microscopy results in a powerful combination of imaging modalities called "correlative light and electron microscopy" (CLEM). Whereas conventional transmission electron microscopy (TEM) tomography is only able to image sections up to a thickness of ~300nm, scanning transmission electron microscopy (STEM) tomography at 200kV allows the analysis of sections up to a thickness of 900nm in three dimensions. In the current study we have successfully integrated STEM tomography into CLEM as demonstrated for human retinal pigment epithelial 1 (RPE1) cells expressing various fluorescent fusion proteins which were high-pressure frozen and then embedded in Lowicryl HM20. Fluorescently labeled gold nanoparticles were applied onto resin sections and imaged by fluorescence and electron microscopy. STEM tomograms were recorded at regions of interest, and overlays were generated using the eC-CLEM software package. Through the nuclear staining of living cells, the use of fluorescently labeled gold fiducials for the generation of overlays, and the integration of STEM tomography we have markedly extended the application of the Kukulski protocol (Kukulski et al., 2011, 2012). Various fluorescently tagged proteins localizing to different cellular organelles could be assigned to their ultrastructural compartments. By combining STEM tomography with on-section CLEM, fluorescently tagged proteins can be localized in three-dimensional ultrastructural environments with a volume of at least 2.7×2.7×0.5μm.We introduce a new workflow that allows screening and selection of staged mammalian cells in mitosis prior to subsequent electron microscopy. We mainly describe four improved steps of specimen preparation. Firstly, we describe a method to efficiently enrich mammalian cells and attach them to sapphire discs; secondly, we report on the use of 3D-printed containers to seed cells on coated sapphire discs for high-pressure freezing; thirdly, we take advantage of a specimen carrier that allows for an upside-down placing of sapphire discs without a second carrier or spacer ring to close the "sandwich"; and fourthly, we use histological dyes to stain DNA/chromatin during freeze-substitution. Out of 14 tested histological dyes, we routinely use four of them for visual inspection of mitotic cells by light microscopy. Applying this streamlined workflow, HeLa cells at different stages of mitosis can be selected for further ultrastructural analysis. The practical aspects of this approach will be discussed herein.Bridging from the macrostructure to the nanostructure of tissues is often technically challenging. To try to solve this, we developed a flexible CLEM workflow that can be applied to the analysis of tissues from diverse model organisms across various length scales. The Histo-CLEM Workflow combines three main microscopy techniques, namely histology, light microscopy and electron microscopy. Herein, all the steps of the Histo-CLEM Workflow are explained in detail to enable the adaptation of the method to tissue particularities and biological questions. The preparation and visualization of mice nerve fibers is shown as an application example of the presented Histo-CLEM Workflow.With the development of advanced imaging methods that took place in the last decade, the spatial correlation of microscopic and spectroscopic information-known as multimodal imaging or correlative microscopy (CM)-has become a broadly applied technique to explore biological and biomedical materials at different length scales. Among the many different combinations of techniques, Correlative Light and Electron Microscopy (CLEM) has become the flagship of this revolution. Where light (mainly fluorescence) microscopy can be used directly for the live imaging of cells and tissues, for almost all applications, electron microscopy (EM) requires fixation of the biological materials. Although sample preparation for EM is traditionally done by chemical fixation and embedding in a resin, rapid cryogenic fixation (vitrification) has become a popular way to avoid the formation of artifacts related to the chemical fixation/embedding procedures. During vitrification, the water in the sample transforms into an amorphous ice, with electron microscopy.Correlative light and electron microscopy (CLEM) combines the strengths of light microscopy (LM) and electron microscopy (EM) to pin-point and visualize cellular or macromolecular structures. However, there are many different imaging modalities that can be combined in a CLEM workflow, creating a vast number of combinations that can overwhelm new-comers to the field. Here, we offer a conceptual framework to help guide the decision-making process for choosing the CLEM workflow that can best address your research question, based on the answer to five questions.
To recreate the in-hospital healthcare pathway for patients treated with coronary angiography or percutaneous coronary intervention, we linked the interventional cardiology registry (ACIRA) and the pseudonymized French hospital medical information system database (PMSI) in the Aquitaine region. The objective of this study was to develop and validate a deterministic merging algorithm between these exhaustive and complementary databases.
After a pre-treatment phase of the databases to standardize the 11 identified linking variables, a deterministic linking algorithm was developed on ACIRA hospital stays between December 2011 and December 2014 in nine interventional cardiology centers as well as the data from the consolidated PMSI databases of the Aquitaine region from 2011 to 2014. Merging was carried out through 12 successive steps, the first consisting in strict linking of the 11 variables. The performance of the algorithm was analyzed in terms of sensitivity, specificity, positive predictive value (PPV) underscored the feasibility and validity of an indirect deterministic pairing to routinely link a registry of practices using hospital data to pseudonymized medico-administrative databases. This method, which can be extrapolated to other health events leading to hospitalization, renders it possible to effectively reconstruct patients' hospital healthcare pathway.Monoclonal antibody (mAb) therapy targeting CD38 and CD47 antigens expressed on cancer cells has transformed therapy options for patients with multiple myeloma as well as other haematological and non-haematological malignancies. While the on target effects of these new drugs highlight the promise of precision cancer therapeutics, the unintended, off target binding of drugs to red blood cells (RBCs) and platelets has required transfusion service laboratories (TSL) and immunohaematology reference laboratories (IRL) to innovate and rapidly set up processes and testing protocols to overcome the significant interference in routine pre-transfusion tests caused by these agents. Binding of anti-CD38 and anti-CD47 drugs to reagent RBCs leads to false positive pan-agglutination during the antihuman globulin phase of testing, making it difficult to rule out underlying alloantibodies, and leading to delays in setting up compatible units for RBC transfusion. Anti-CD47 agents can also interfere with ABO/Rh typing studies. Several methods to successfully mitigate interference have been described, such as treatment of reagent RBCs with reducing agents or enzymes, allogeneic RBC adsorption studies and drug specific neutralisation assays; all methods have limitations.
Here's my website: https://www.selleckchem.com/products/px-478-2hcl.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team