Notes
![]() ![]() Notes - notes.io |
Planning effective sleep-wake schedules for civilian and military settings depends on the ability to predict the extent to which restorative sleep is likely for a specified sleep period. Here, we developed and validated two mathematical models, one for predicting sleep latency and a second for predicting sleep duration, as decision aids to predict efficacious sleep periods.
We extended the Unified Model of Performance (UMP), a well-validated mathematical model of neurobehavioral performance, to predict sleep latency and sleep duration, which vary nonlinearly as a function of the homeostatic sleep pressure and the circadian rhythm. To this end, we used the UMP to predict the time course of neurobehavioral performance under different conditions. We developed and validated the models using experimental data from 317 unique subjects from 24 different studies, which included sleep conditions spanning the entire circadian cycle.
The sleep-latency and sleep-duration models accounted for 42% and 84% of the variance in the data, respectively, and yielded acceptable average prediction errors for planning sleep schedules (4.0min for sleep latency and 0.8h for sleep duration). Importantly, we identified conditions under which small shifts in sleep onset timing result in disproportionately large differences in sleep duration-knowledge that may be applied to improve performance, safety, and sustainability in civilian and military operations.
These models extend the capabilities of existing predictive fatigue-management tools, allowing users to anticipate the most opportune times to schedule sleep periods.
These models extend the capabilities of existing predictive fatigue-management tools, allowing users to anticipate the most opportune times to schedule sleep periods.People infected with severe acute respiratory syndrome coronavirus 2 display a wide range of illness, from asymptomatic infection to severe respiratory distress resulting in death. We measured serum biomarkers in uninfected individuals and in individuals with mild, moderate, or critical coronavirus disease 2019 (COVID-19) disease. Levels of monocyte activation (soluble CD14 and fatty acid-binding protein 4) and inflammation (tumor necrosis factor receptors 1 and 2 [TNFR1 and TNFR2]) were increased in COVID-19 individuals, regardless of disease severity. Fluorescein5isothiocyanate Among patients with critical disease, individuals who recovered from COVID-19 had lower levels of TNFR1 and TNFR2 at hospital admission compared to these levels in patients with critical disease who ultimately died.
Although mitochondrial dysfunction appears to be a contributing factor in the pathogenesis of cardiovascular and metabolic diseases, empirical data on this association are still lacking. This study evaluated whether mitochondrial oxidative capacity, as assessed by phosphorus magnetic resonance spectroscopy, was associated with cardiovascular risk, as estimated by the Framingham Risk Score (FRS), and with a clinical history of cardiovascular disease (CVD), in community-dwelling adults.
A total of 616 subjects from the Baltimore Longitudinal Study of Aging (mean age 66 years) underwent a comprehensive clinical evaluation. Mitochondrial oxidative capacity in skeletal muscle was assessed as post-exercise phosphocreatine recovery time constant by phosphorus magnetic resonance spectroscopy. Multivariate regression models were employed to determine the cross-sectional association of mitochondrial oxidative capacity with FRS and history of CVD.
Decreased mitochondrial oxidative capacity was strongly associated d energy production could hamper the functionality of heart and vessels. In turn, a malfunctioning cardiovascular apparatus could fail to deliver the oxygen necessary for optimal mitochondrial energy production, therefore creating a vicious cycle. Longitudinal studies are necessary to ascertain the directionality of the association and the eventual presence of common pathogenetic roots. In conclusion, mitochondria could represent an important target for intervention in cardiovascular health.Glioma-associated oncogene homolog 3 (GLI3), whose main function is to inhibit GLI1, has been associated with neuronal differentiation in medulloblastoma. However, it is not clear what molecular subtype(s) show increased GLI3 expression. link2 GLI3 levels were assessed by immunohistochemistry in 2 independent cohorts, including a total of 88 cases, and found to be high in both WNT- and SHH-activated medulloblastoma. Analysis of bulk mRNA expression data and single cell RNA sequencing studies confirmed that GLI1 and GLI3 are highly expressed in SHH-activated medulloblastoma, whereas GLI3 but not GLI1 is highly expressed in WNT-activated medulloblastoma. Immunohistochemical analysis has shown that GLI3 is expressed inside the neuronal differentiated nodules of SHH-activated medulloblastoma, whereas GLI1/2 are expressed in desmoplastic areas. In contrast, GLI3 is diffusely expressed in WNT-activated medulloblastoma, whereas GLI1 is suppressed. Our data suggest that GLI3 may be a master regulator of neuronal differentiation and morphology in these subgroups.
The aim of our study was to investigate clinical and histopathological findings in adult DM patients positive for anti-Mi2 (anti-Mi2+) antibodies compared with DM patients negative for anti-Mi2 (anti-Mi2-).
Clinical data of adult DM patients, who fulfilled EULAR/ACR 2017 classification criteria, were gathered from electronic medical records of three tertiary Rheumatology Units. Histopathological study was carried out on 12 anti-Mi2+ and 14 anti-Mi2- muscle biopsies performed for diagnostic purpose. Nine biopsies from immune mediated necrotizing myopathy (IMNM) patients were used as control group.
Twenty-two anti-Mi2+ DM [90.9% female, mean age 56.5 (15.7) years] were compared with 69 anti-Mi2- DM patients [71% female, mean age 52.4 (17) years]. Anti-Mi2+ patients presented higher levels of serum muscle enzymes than anti-Mi2- patients [median (IQR) creatine-kinase fold increment 16 (7-37)vs 3.5 (1-9.9), P<0.001] before treatment initiation. Moreover, a trend towards less pulmonary involvement was detected in anti-Mi2+ DM (9.1% vs 30.4%, P=0.05), without any case of rapidly progressive interstitial lung disease. At muscle histology, anti-Mi2+ patients showed more necrotic/degenerative fibres than anti-Mi2- patients [mean 5.3% (5) vs 0.8% (1), P<0.01], but similar to IMNM [5.9% (6), P>0.05]. link3 In addition, the endomysial macrophage score was similar between anti-Mi2+ and IMNM patients [mean 1.2 (0.9) vs 1.3 (0.5), P>0.05], whereas lower macrophage infiltration was found in anti-Mi2- DM [mean 0.4 (0.5), <0.01].
Anti-Mi2+ patients represent a specific DM subset with high muscle damage. Histological hallmarks were a higher prevalence of myofiber necrosis, endomysial involvement and macrophage infiltrates at muscle biopsy.
Anti-Mi2+ patients represent a specific DM subset with high muscle damage. Histological hallmarks were a higher prevalence of myofiber necrosis, endomysial involvement and macrophage infiltrates at muscle biopsy.
To propose a new model outlining a hypothesized cyclical relation between executive functioning, emotional regulation, and chronic pain in adolescence and to highlight the likely importance of such a relation for self-management behavior and pain-related disability.
A review of the existing literature that critically explores the role of executive functioning in understanding chronic pain experiences and self-management in adolescence in order to develop the Cyclical model Of Pain, Executive function, emotion regulation, and Self-management (COPES).
Growing evidence points towards a potential cyclical relation between chronic pain and impaired executive functioning, which forms the basis of COPES. The COPES model proposes that the relative immaturity of executive functioning in adolescence negatively influences their ability to engage with self-management, which in turn increases adolescents' disability due to pain and contributes to the maintenance of chronic pain, which perpetuates the reduced capacitervention development and refinement aimed at improving self-management uptake and adherence amongst adolescents with chronic pain.The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin >100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3-isozymic glycosyltransferases from Salix purpurea-that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.In crops there are quantitative trait loci (QTLs) in which some of the causal quantitative trait genes (QTGs) have not been functionally characterized even in the model plant Arabidopsis. We propose an approach to delineate QTGs in rapeseed by coordinating expression of genes located within QTLs and known orthologs related to traits from Arabidopsis. Using this method in developing siliques 15 d after pollination in 71 lines of rapeseed, we established an acyl-lipid metabolism co-expression network with 21 modules composed of 270 known acyl-lipid genes and 3503 new genes. The core module harbored 76 known genes involved in fatty acid and triacylglycerol biosynthesis and 671 new genes involved in sucrose transport, carbon metabolism, amino acid metabolism, seed storage protein processes, seed maturation, and phytohormone metabolism. Moreover, the core module closely associated with the modules of photosynthesis and carbon metabolism. From the co-expression network, we selected 12 hub genes to identify their putative Arabidopsis orthologs. These putative orthologs were functionally analysed using Arabidopsis knockout and overexpression lines. Four knockout mutants exhibited lower seed oil content, while the seed oil content in 10 overexpression lines was significantly increased. Therefore, combining gene co-expression network analysis and QTL mapping, this study provides new insights into the detection of QTGs and into acyl-lipid metabolism in rapeseed.
The occurrence of calcinosis cutis as a clinical feature of dermatomyositis in adult patients is not well understood. Cohort studies of adult patients with calcinosis are rare. We systematically describe the clinical features, treatments and outcomes of adult patients with calcinosis.
We initially enrolled 627 adult DM patients. Of those enrolled, 35 (5.6%) were found to have calcinosis. We analysed the clinical features associated with calcinosis in this subgroup. The risk factors associated with calcinosis were analysed using the Poisson regression model.
Multivariate analysis showed that a younger age at disease onset [odds ratio (OR) = 0.945, 95% CI 0.925, 0.966, P < 0.001], dysphagia (OR = 2.609, 95% CI 1.189, 5.728, P = 0.017), skin ulcer (OR = 5.705, 95% CI 3.041, 10.705, P < 0.001) and the presence of anti-nuclear matrix protein 2 antibody (OR = 5.917, 95% CI 2.754, 12.714, P < 0.001) were independently associated with calcinosis. In both the low- and high-dose prednisone treatment groups, no difference in treatment response was seen between the bisphosphonate treatment group and the group not receiving bisphosphonate treatment (P = 1.
Website: https://www.selleckchem.com/products/fluorescein-5-isothiocyanate-fitc.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team